SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Fazekas F)) srt2:(2015-2019)"

Search: (WFRF:(Fazekas F)) > (2015-2019)

  • Result 1-10 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Brouwer, F., et al. (author)
  • Energy modelling and the Nexus concept
  • 2018
  • In: Energy Strategy Reviews. - : Elsevier. - 2211-467X .- 2211-4688. ; 19, s. 1-6
  • Journal article (peer-reviewed)abstract
    • The Nexus concept is the interconnection between the resources energy, water, food, land and climate. Such interconnections enable to address trade-offs and seek for synergies among them. Several policy areas (e.g. bio-based economy, circular economy) increasingly consider the Nexus concept. Ignoring synergies and trade-offs between energy and natural flows, can generate misleading modelling outcomes. Several modelling tools are available to address energy and the Nexus. Based on six such models, this paper aims to support the design and testing of coherent strategies for sustainable development. Model improvements would be achieved by comparing model outcomes and including a common baseline.
  •  
10.
  • Khalil, M., et al. (author)
  • Neurofilaments as biomarkers in neurological disorders
  • 2018
  • In: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 14:10, s. 577-589
  • Journal article (peer-reviewed)abstract
    • Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view