SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Giedraitis Vilmantas)) pers:(Ingelsson Erik) srt2:(2015-2019)"

Search: (WFRF:(Giedraitis Vilmantas)) pers:(Ingelsson Erik) > (2015-2019)

  • Result 1-10 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Dumanski, Jan P., et al. (author)
  • Smoking is associated with mosaic loss of chromosome Y
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6217, s. 81-83
  • Journal article (peer-reviewed)abstract
    • Tobacco smoking is a risk factor for numerous disorders, including cancers affecting organs outside the respiratory tract. Epidemiological data suggest that smoking is a greater risk factor for these cancers in males compared to females. This observation, together with the fact that males have a higher incidence of and mortality from most non-sex-specific cancers, remains unexplained. Loss of chromosome Y (LOY) in blood cells is associated with increased risk of nonhematological tumors. We demonstrate here that smoking is associated with LOY in blood cells in three independent cohorts [TwinGene: odds ratio (OR) = 4.3, 95% CI = 2.8-6.7; ULSAM: OR = 2.4, 95% CI = 1.6-3.6; and PIVUS: OR = 3.5, 95% CI = 1.4-8.4] encompassing a total of 6014 men. The data also suggest that smoking has a transient and dose-dependent mutagenic effect on LOY status. The finding that smoking induces LOY thus links a preventable risk factor with the most common acquired human mutation.
  •  
3.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
4.
  • Fall, Tove, et al. (author)
  • Age- and sex-specific causal effects of adiposity on cardiovascular risk factors
  • 2015
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:5, s. 1841-1852
  • Journal article (peer-reviewed)abstract
    • Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
  •  
5.
  • Fall, Tove, 1979-, et al. (author)
  • Non-targeted metabolomics combined with genetic analyses identifies bile acid synthesis and phospholipid metabolism as being associated with incident type 2 diabetes
  • 2016
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:10, s. 2114-2124
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesisIdentification of novel biomarkers for type 2 diabetes and their genetic determinants could lead to improved understanding of causal pathways and improve risk prediction.MethodsIn this study, we used data from non-targeted metabolomics performed using liquid chromatography coupled with tandem mass spectrometry in three Swedish cohorts (Uppsala Longitudinal Study of Adult Men [ULSAM], n = 1138; Prospective Investigation of the Vasculature in Uppsala Seniors [PIVUS], n = 970; TwinGene, n = 1630). Metabolites associated with impaired fasting glucose (IFG) and/or prevalent type 2 diabetes were assessed for associations with incident type 2 diabetes in the three cohorts followed by replication attempts in the Cooperative Health Research in the Region of Augsburg (KORA) S4 cohort (n = 855). Assessment of the association of metabolite-regulating genetic variants with type 2 diabetes was done using data from a meta-analysis of genome-wide association studies.ResultsOut of 5961 investigated metabolic features, 1120 were associated with prevalent type 2 diabetes and IFG and 70 were annotated to metabolites and replicated in the three cohorts. Fifteen metabolites were associated with incident type 2 diabetes in the four cohorts combined (358 events) following adjustment for age, sex, BMI, waist circumference and fasting glucose. Novel findings included associations of higher values of the bile acid deoxycholic acid and monoacylglyceride 18:2 and lower concentrations of cortisol with type 2 diabetes risk. However, adding metabolites to an existing risk score improved model fit only marginally. A genetic variant within the CYP7A1 locus, encoding the rate-limiting enzyme in bile acid synthesis, was found to be associated with lower concentrations of deoxycholic acid, higher concentrations of LDL-cholesterol and lower type 2 diabetes risk. Variants in or near SGPP1, GCKR and FADS1/2 were associated with diabetes-associated phospholipids and type 2 diabetes.Conclusions/interpretationWe found evidence that the metabolism of bile acids and phospholipids shares some common genetic origin with type 2 diabetes.Access to research materialsMetabolomics data have been deposited in the Metabolights database, with accession numbers MTBLS93 (TwinGene), MTBLS124 (ULSAM) and MTBLS90 (PIVUS).
  •  
6.
  • Flannick, Jason, et al. (author)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Journal article (peer-reviewed)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
7.
  • Folkersen, Lasse, et al. (author)
  • Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.
  •  
8.
  • Fuchsberger, Christian, et al. (author)
  • The genetic architecture of type 2 diabetes
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Journal article (peer-reviewed)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
9.
  • Hägg, Sara, et al. (author)
  • Adiposity as a cause of cardiovascular disease : a Mendelian randomization study
  • 2015
  • In: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 44:2, s. 578-586
  • Journal article (peer-reviewed)abstract
    • Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (beta = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.
  •  
10.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 33
Type of publication
journal article (33)
Type of content
peer-reviewed (32)
other academic/artistic (1)
Author/Editor
Giedraitis, Vilmanta ... (33)
Lind, Lars (31)
Morris, Andrew P. (18)
Ingelsson, Erik, 197 ... (18)
Ingelsson, Erik (15)
Lindgren, Cecilia M. (15)
show more...
Mahajan, Anubha (14)
Salomaa, Veikko (13)
Peters, Annette (13)
Loos, Ruth J F (13)
Boehnke, Michael (12)
Gieger, Christian (12)
Metspalu, Andres (12)
Uitterlinden, André ... (12)
Zhang, Weihua (12)
Perola, Markus (11)
Wareham, Nicholas J. (11)
Laakso, Markku (11)
McCarthy, Mark I (11)
Langenberg, Claudia (11)
Scott, Robert A (11)
Tuomilehto, Jaakko (11)
Strauch, Konstantin (11)
Esko, Tõnu (11)
Kuusisto, Johanna (10)
Mohlke, Karen L (10)
Sundström, Johan (10)
Samani, Nilesh J. (10)
Gustafsson, Stefan (10)
Palmer, Colin N. A. (10)
Morris, Andrew D (10)
Franco, Oscar H. (10)
Amouyel, Philippe (10)
Lu, Yingchang (10)
Chambers, John C. (10)
Ridker, Paul M. (9)
Chasman, Daniel I. (9)
van Duijn, Cornelia ... (9)
Pedersen, Nancy L (9)
Rotter, Jerome I. (9)
Hattersley, Andrew T (9)
Luan, Jian'an (9)
Hayward, Caroline (9)
Zeggini, Eleftheria (9)
Frayling, Timothy M (9)
Jackson, Anne U. (9)
Teumer, Alexander (9)
Collins, Francis S. (9)
Rauramaa, Rainer (9)
Taylor, Kent D. (9)
show less...
University
Uppsala University (32)
Karolinska Institutet (24)
Högskolan Dalarna (13)
Lund University (12)
Umeå University (8)
University of Gothenburg (4)
show more...
Stockholm University (4)
University of Gävle (2)
Södertörn University (2)
Örebro University (1)
Linköping University (1)
Stockholm School of Economics (1)
show less...
Language
English (33)
Research subject (UKÄ/SCB)
Medical and Health Sciences (31)
Natural sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view