SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Huber F.)) srt2:(2020-2024) srt2:(2022)"

Search: (WFRF:(Huber F.)) srt2:(2020-2024) > (2022)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Stroth, U., et al. (author)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Journal article (peer-reviewed)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
5.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • In: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Journal article (peer-reviewed)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
6.
  •  
7.
  • Sandner, Fabian, et al. (author)
  • Femtosecond nanoscopy of charge carrier dynamics in van der Waals heterostructures
  • 2022
  • In: Optics InfoBase Conference Papers.
  • Conference paper (peer-reviewed)abstract
    • Ultrafast polarization nanoscopy traces the femtosecond interlayer tunneling and the density-dependent Mott transition of strongly bound excitons in custom-tailored van der Waals heterostructures with subcycle temporal and nanometer spatial resolution.
  •  
8.
  • Siday, Thomas, et al. (author)
  • Ultrafast Nanoscopy of an Exciton Mott Transition in Twisted Bilayer WSe 2
  • 2022
  • In: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. ; August
  • Conference paper (peer-reviewed)abstract
    • The density-driven transition of an exciton gas into a plasma of unbound electron-hole pairs has provided a compelling testbed for exploring many-body physics. Here, we use ultrafast polarization nanoscopy to trace a Mott transition of excitons in a twisted bilayer of WSe2. An initially monomolecular recombination of optically dark excitons continuously evolves into bimolecular recombination of unbound electrons and holes as the density is increased. Furthermore, we reveal directly how the Mott transition varies on nanometer length scales, demonstrating how the technique is indispensable in the study of intrinsically disordered van der Waals materials.
  •  
9.
  • Siday, Thomas, et al. (author)
  • Ultrafast Nanoscopy of High-Density Exciton Phases in WSe 2
  • 2022
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 22:6, s. 2561-2568
  • Journal article (peer-reviewed)abstract
    • The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe2 homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 1012 cm-2. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.
  •  
10.
  • Zizlsperger, Martin, et al. (author)
  • Ultrafast nanoscopy of an excitonic insulator-metal transition in twisted bilayer WSe 2
  • 2022
  • In: CLEO: QELS_Fundamental Science in Proceedings Conference on Lasers and Electro-Optics. - 9781557528209 - 9781957171050
  • Conference paper (peer-reviewed)abstract
    • Many-body interactions between excitons in a transition-metal dichalcogenide bilayer drive a transition into an electron-hole liquid at high densities. Using ultrafast polarization nanoscopy, we unveil spatiotemporal dynamics of this continuous Mott transition on the nanoscale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view