SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Lewis David M.)) srt2:(2020-2024)"

Search: (WFRF:(Lewis David M.)) > (2020-2024)

  • Result 1-10 of 51
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Mullins, N., et al. (author)
  • Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology
  • 2021
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53, s. 817-829
  • Journal article (peer-reviewed)abstract
    • Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies. Genome-wide association analyses of 41,917 bipolar disorder cases and 371,549 controls of European ancestry provide new insights into the etiology of this disorder and identify novel therapeutic leads and potential opportunities for drug repurposing.
  •  
8.
  • Mullins, Niamh, et al. (author)
  • Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
  • 2022
  • In: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 91:3, s. 313-327
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
  •  
9.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
10.
  • Abele, H., et al. (author)
  • Particle physics at the European Spallation Source
  • 2023
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Research review (peer-reviewed)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 51
Type of publication
journal article (46)
research review (3)
Type of content
peer-reviewed (48)
other academic/artistic (1)
Author/Editor
Walker, R. (7)
Thomas, J. (7)
Marshall, R. (6)
Clark, M. (6)
Lewis, J (6)
Price, D. (5)
show more...
Davies, A (5)
Griffiths, J. (4)
Hayashi, T. (4)
Jones, G. (4)
Li, Y. (4)
Nowak, S. (4)
Silva, J. (4)
Spagnolo, S. (4)
Yang, Y. (4)
Gao, Y. (4)
Martin, A. J. (4)
Burgess, A (4)
Kaufman, M (4)
Taylor, D (4)
Oya, Y. (4)
Robinson, S. (4)
Nicassio, M. (4)
Seo, J. (4)
Schneider, M. (4)
Foley, S. (4)
Garcia, J. (4)
Zhang, W. (4)
West, A. (4)
Wheeler, S. (4)
Smith, P. (4)
Morris, J. (4)
Lee, S (4)
Wood, R (4)
Bowden, M. (4)
Svoboda, J (4)
Ali, M (4)
Gorini, G (4)
Knight, M (4)
Scott, M (4)
Sridhar, S. (4)
Young, R. (4)
Rodrigues, P (4)
Duran, I (4)
Mayer, M. (4)
Khan, K (4)
Lopez, J. M. (4)
Hjalmarsson, A. (4)
Buckingham, R. (4)
Fowler, C. (4)
show less...
University
Uppsala University (15)
Lund University (12)
University of Gothenburg (11)
Stockholm University (10)
Chalmers University of Technology (10)
Karolinska Institutet (8)
show more...
Umeå University (5)
Royal Institute of Technology (4)
Linköping University (3)
Luleå University of Technology (1)
University West (1)
Örebro University (1)
Malmö University (1)
RISE (1)
Karlstad University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (51)
Research subject (UKÄ/SCB)
Natural sciences (24)
Medical and Health Sciences (23)
Engineering and Technology (4)
Social Sciences (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view