SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Lodieu N.)) srt2:(2023)"

Search: (WFRF:(Lodieu N.)) > (2023)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murgas, F., et al. (author)
  • Two super-Earths at the edge of the habitable zone of the nearby M dwarf TOI-2095
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Journal article (peer-reviewed)abstract
    • The main scientific goal of TESS is to find planets smaller than Neptune around stars that are bright enough to allow for further characterization studies. Given our current instrumentation and detection biases, M dwarfs are prime targets in the search for small planets that are in (or near) the habitable zone of their host star. In this work, we use photometric observations and CARMENES radial velocity (RV) measurements to validate a pair of transiting planet candidates found by TESS. The data were fitted simultaneously, using a Bayesian Markov chain Monte Carlo (MCMC) procedure and taking into account the stellar variability present in the photometric and spectroscopic time series. We confirm the planetary origin of the two transiting candidates orbiting around TOI-2095 (LSPM J1902+7525). The star is a nearby M dwarf (d = 41.90 ± 0.03 pc, Teff = 3759 ± 87 K, V = 12.6 mag), with a stellar mass and radius of M∗ = 0.44 ± 0.02 M· and R∗ = 0.44 ± 0.02 R·, respectively. The planetary system is composed of two transiting planets: TOI-2095b, with an orbital period of Pb = 17.66484 ± (7 A - 10- 5) days, and TOI-2095c, with Pc = 28.17232 ± (14 A - 10- 5) days. Both planets have similar sizes with Rb = 1.25 ± 0.07 R· and Rc = 1.33 ± 0.08 R· for planet b and planet c, respectively. Although we did not detect the induced RV variations of any planet with significance, our CARMENES data allow us to set stringent upper limits on the masses of these objects. We find Mb < 4.1 M· for the inner and Mc < 7.4 M· for the outer planet (95% confidence level). These two planets present equilibrium temperatures in the range of 300 350 K and are close to the inner edge of the habitable zone of their star.
  •  
2.
  • Korth, J., et al. (author)
  • TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
  • 2023
  • In: Astronomy & Astrophysics. - 1432-0746 .- 0004-6361. ; 675
  • Journal article (peer-reviewed)abstract
    • The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.
  •  
3.
  • Mallorquin, M., et al. (author)
  • TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Journal article (peer-reviewed)abstract
    • We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 +/- 1.46 M-circle plus, which together with a radius of 2.08 +/- 0.12 R-circle plus, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H-2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.
  •  
4.
  • Damasso, M., et al. (author)
  • Photometric follow-up of the 20 Myr old multi-planet host star V1298 Tau with CHEOPS and ground-based telescopes
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Journal article (peer-reviewed)abstract
    • Context. The 20 Myr old star V1298 Tau hosts at least four planets. Since its discovery, this system has been a target of intensive photometric and spectroscopic monitoring. To date, the characterisation of its architecture and planets’ fundamental properties has been very challenging.Aims. The determination of the orbital ephemeris of the outermost planet V1298 Tau e remains an open question. Only two transits have been detected so far by Kepler/K2 and TESS, allowing for a grid of reference periods to be tested with new observations, without excluding the possibility of transit timing variations. Observing a third transit would allow for better constraints to be set on the orbital period and would also help in determining an accurate radius for V1298 Tau e because the previous transits showed different depths.Methods. We observed V1298 Tau with the CHaracterising ExOPlanet Satellite (CHEOPS) to search for a third transit of planet e within observing windows selected to test three of the shortest predicted orbital periods. We also collected ground-based observations to verify the result found with CHEOPS. We reanalysed Kepler/K2 and TESS light curves to test how the results derived from these data are affected by alternative photometric extraction and detrending methods.Results. We report the CHEOPS detection of a transit-like signal that could be attributed to V1298 Tau e. If so, that result would imply that the orbital period calculated from fitting a linear ephemeris to the three available transits is close to ~45 days. Results from the ground-based follow-up marginally support this possibility. We found that i) the transit observed by CHEOPS has a longer duration compared to that of the transits observed by Kepler/K2 and TESS; and ii) the transit observed by TESS is >30% deeper than that of Kepler/K2 and CHEOPS, and it is also deeper than the measurement previously reported in the literature, according to our reanalysis.Conclusions. If the new transit detected by CHEOPS is found to be due to V1298 Tau e, this would imply that the planet experiences TTVs of a few hours, as deduced from three transits, as well as orbital precession, which would explain the longer duration of the transit compared to the Kepler/K2 and TESS signals. Another and a priori less likely possibility is that the newly detected transit belongs to a fifth planet with a longer orbital period than that of V1298 Tau e. Planning further photometric follow-up to search for additional transits is indeed necessary to solve the conundrum, as well as to pin down the radius of V1298 Tau e.
  •  
5.
  • Turrini, D., et al. (author)
  • The GAPS programme at TNG : XLVIII. The unusual formation history of V1298 Tau
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Journal article (peer-reviewed)abstract
    • Context. Observational data from space- and ground-based campaigns have revealed that the 10-30 Ma old V1298Tau star hosts a compact and massive system of four planets. Mass estimates are available for the two outer giant planets and point to unexpectedly high densities for their young ages.Aims. We investigate the formation of these two outermost giant planets, V1298 Tau b and e, and the present dynamical state of V1298 Tau's global architecture in order to shed light on the history of this young and peculiar extrasolar system.Methods. We performed detailed N-body simulations to explore the link between the densities of V1298 Tau b and e and their migration and accretion of planetesimals within the native circumstellar disk. We combined N-body simulations and the normalized angular momentum deficit (NAMD) analysis of the architecture to characterize V1298 Tau's dynamical state and connect it to the formation history of the system. We searched for outer planetary companions to constrain V1298 Tau's planetary architecture and the extension of its primordial circumstellar disk.Results. The high densities of V1298 Tau b and e suggest they formed at quite a distance from their host star, likely beyond the CO2 snowline. The higher nominal density of V1298 Tau e suggests it formed farther out than V1298 Tau b. The current architecture of V1298 Tau is not characterized by resonant chains. Planet-planet scattering with an outer giant planet is the most likely cause for the lack of a resonant chain between V1298 Tau's planets, but currently our search for outer companions using SPHERE and Gaia observations can exclude only the presence of planets more massive than 2 MJ.Conclusions. The most plausible scenario for V1298 Tau's formation is that the system formed by convergent migration and resonant trapping of planets born in a compact and plausibly massive disk. In the wake of their migration, V1298 Tau b and e would have left a dynamically excited protoplanetary disk, naturally creating the conditions for the later breaking of the resonant chain by planet-planet scattering.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view