SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Lomas P. J.)) srt2:(2015-2019) srt2:(2017)"

Search: (WFRF:(Lomas P. J.)) srt2:(2015-2019) > (2017)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Joffrin, E., et al. (author)
  • Impact of divertor geometry on H-mode confinement in the JET metallic wall
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:8
  • Journal article (peer-reviewed)abstract
    • Recent experiments with the ITER-like wall have demonstrated that changes in divertor strike point position are correlated with strong modification of the global energy confinement. The impact on energy confinement is observable both on the pedestal confinement and core normalised gradients. The corner configuration shows an increased core density gradient length and ion pressure indicating a better ion confinement. The study of neutral re-circulation indicates the neutral pressure in the main chamber varies inversely with the energy confinement and a correlation between the pedestal total pressure and the neutral pressure in the main chamber can be established. It does not appear that charge exchange losses nor momentum losses could explain this effect, but it may be that changes in edge electric potential are playing a role at the plasma edge. This study emphasizes the importance of the scrape-off layer (SOL) conditions on the pedestal and core confinement.
  •  
3.
  • Frassinetti, Lorenzo, et al. (author)
  • Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 59:1
  • Journal article (peer-reviewed)abstract
    • Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with rho* consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on rho*, qualitatively in agreement with the peeling-ballooning (P-B) model. The nu* dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to approximate to 10% at low nu*. The pedestal stability shows an improvement with decreasing nu*. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The beta dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with beta, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing beta is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing beta. The P-B analysis shows that the stability reduction with increasing beta at high nu* is due to the destabilizing effect of the increased relative shift.
  •  
4.
  • Frassinetti, Lorenzo, et al. (author)
  • Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW
  • 2017
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 57:1
  • Journal article (peer-reviewed)abstract
    • A dimensionless collisionality scan in low-triangularity plasmas in the Joint European Torus with the ITER-like wall (JET-ILW) has been performed. The increase of the normalized energy confinement (defined as the ratio between thermal energy confinement and Bohm confinement time) with decreasing collisionality is observed. Moreover, at low collisionality, a confinement factor H-98, comparable to JET-C, is achieved. At high collisionality, the low normalized confinement is related to a degraded pedestal stability and a reduction in the density-profile peaking. The increase of normalized energy confinement is due to both an increase in the pedestal and in the core regions. The improvement in the pedestal is related to the increase of the stability. The improvement in the core is driven by (i) the core temperature increase via the temperature-profile stiffness and by (ii) the density-peaking increase driven by the low collisionality. Pedestal stability analysis performed with the ELITE (edge-localized instabilities in tokamak equilibria) code has a reasonable qualitative agreement with the experimental results. An improvement of the pedestal stability with decreasing collisionality is observed. The improvement is ascribed to the reduction of the pedestal width, the increase of the bootstrap current and the reduction of the relative shift between the positions of the pedestal density and pedestal temperature. The EPED1 model predictions for the pedestal pressure height are qualitatively well correlated with the experimental results. Quantitatively, EPED1 overestimates the experimental pressure by 15-35%. In terms of the pedestal width, a correct agreement (within 10-15%) between the EPED1 and the experimental width is found at low collisionality. The experimental pedestal width increases with collisionality. Nonetheless, an extrapolation to low-collisionality values suggests that the width predictions from the KBM constraint are reasonable for ITER.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view