SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Metzendorf Christoph)) srt2:(2020-2023)"

Search: (WFRF:(Metzendorf Christoph)) > (2020-2023)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Z., et al. (author)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Journal article (peer-reviewed)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
2.
  • Mattis, Katia K, et al. (author)
  • Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression
  • 2023
  • In: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 66:4, s. 674-694
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk.METHODS: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles.RESULTS: CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function.CONCLUSIONS/INTERPRETATION: Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
  •  
3.
  • Metzendorf, Christoph, et al. (author)
  • Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism
  • 2020
  • In: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 25:18, s. 4141-
  • Journal article (peer-reviewed)abstract
    • Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.
  •  
4.
  • Nuernberger, Vincent, et al. (author)
  • Hormonally Induced Hepatocellular Carcinoma in Diabetic Wild Type and Carbohydrate Responsive Element Binding Protein Knockout Mice
  • 2021
  • In: Cells. - : MDPI. - 2073-4409. ; 10:10
  • Journal article (peer-reviewed)abstract
    • Objective: In the rat, the pancreatic islet transplantation model is an established method to induce hepatocellular carcinomas (HCC), due to insulin-mediated metabolic and molecular alterations like increased glycolysis and de novo lipogenesis and the oncogenic AKT/mTOR pathway including upregulation of the transcription factor Carbohydrate-response element-binding protein (ChREBP). ChREBP could therefore represent an essential oncogenic co-factor during hormonally induced hepatocarcinogenesis.Methods: Pancreatic islet transplantation was implemented in diabetic C57Bl/6J (wild type, WT) and ChREBP-knockout (KO) mice for 6 and 12 months. Liver tissue was examined using histology, immunohistochemistry, electron microscopy and Western blot analysis. Finally, we performed NGS-based transcriptome analysis between WT and KO liver tumor tissues.Results: Three hepatocellular carcinomas were detectable after 6 and 12 months in diabetic transplanted WT mice, but only one in a KO mouse after 12 months. Pre-neoplastic clear cell foci (CCF) were also present in liver acini downstream of the islets in WT and KO mice. In KO tumors, glycolysis, de novo lipogenesis and AKT/mTOR signalling were strongly downregulated compared to WT lesions. Extrafocal liver tissue of diabetic, transplanted KO mice revealed less glycogen storage and proliferative activity than WT mice. From transcriptome analysis, we identified a set of transcripts pertaining to metabolic, oncogenic and immunogenic pathways that are differentially expressed between tumors of WT and KO mice. Of 315 metabolism-associated genes, we observed 199 genes that displayed upregulation in the tumor of WT mice, whereas 116 transcripts showed their downregulated expression in KO mice tumor.Conclusions: The pancreatic islet transplantation model is a suitable method to study hormonally induced hepatocarcinogenesis also in mice, allowing combination with gene knockout models. Our data indicate that deletion of ChREBP delays insulin-induced hepatocarcinogenesis, suggesting a combined oncogenic and lipogenic function of ChREBP along AKT/mTOR-mediated proliferation of hepatocytes and induction of hepatocellular carcinoma.
  •  
5.
  • Porcellato, Elena, et al. (author)
  • The S-palmitoylome and DHHC-PAT interactome of Drosophila melanogaster S2R+cells indicate a high degree of conservation to mammalian palmitoylomes
  • 2022
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 17:8
  • Journal article (peer-reviewed)abstract
    • Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster. Here we present the palmitoylome of Drosophila S2R+ cells, comprising 198 proteins, an estimated 3.5% of expressed genes in these cells. Comparison of orthologs between mammals and Drosophila suggests that S-palmitoylated proteins are more conserved between these distant phyla than non-S-palmitoylated proteins. To identify putative client proteins and interaction partners of the DHHC family of protein acyl-transferases (PATs) we established DHHC-BioID, a proximity biotinylation-based method. In S2R+ cells, ectopic expression of the DHHC-PAT dHip14-BioID in combination with Snap24 or an interaction-deficient Snap24-mutant as a negative control, resulted in biotinylation of Snap24 but not the Snap24-mutant. DHHC-BioID in S2R+ cells using 10 different DHHC-PATs as bait identified 520 putative DHHC-PAT interaction partners of which 48 were S-palmitoylated and are therefore putative DHHC-PAT client proteins. Comparison of putative client protein/DHHC-PAT combinations indicates that CG8314, CG5196, CG5880 and Patsas have a preference for transmembrane proteins, while S-palmitoylated proteins with the Hip14-interaction motif are most enriched by DHHC-BioID variants of approximated and dHip14. Finally, we show that BioID is active in larval and adult Drosophila and that dHip14-BioID rescues dHip14 mutant flies, indicating that DHHC-BioID is non-toxic. In summary we provide the first systematic analysis of a Drosophila palmitoylome. We show that DHHC-BioID is sensitive and specific enough to identify DHHC-PAT client proteins and provide DHHC-PAT assignment for ca. 25% of the S2R+ cell palmitoylome, providing a valuable resource. In addition, we establish DHHC-BioID as a useful concept for the identification of tissue-specific DHHC-PAT interactomes in Drosophila.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view