SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Muller B)) hsvcat:2 srt2:(2020-2024)"

Search: (WFRF:(Muller B)) hsvcat:2 > (2020-2024)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Sefidari, H., et al. (author)
  • The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants
  • 2020
  • In: Fuel Processing Technology. ; 199
  • Journal article (peer-reviewed)abstract
    • Woody biomass is being considered a potential co-firing fuel to reduce coal consumption in iron-ore pelletizing rotary kilns. An important consideration is the slagging inside the kiln caused by ash deposition that can lead to process disturbances or shutdowns. In terms of ash chemistry, co-firing woody biomass implies the addition of mainly Ca and K to the Si- and Al-dominated coal-ash (characteristic of high-rank coals) and Fe from the iron-ore that are both inherent to the process. An alkali-laden gaseous atmosphere is also present due to the accumulation of alkali via the recirculation of flue gas in the system. The slagging propensity of blending woody biomass with coal in the grate-kiln process was studied based on the viscosity of the molten phases predicted by global thermochemical equilibrium modeling. This was carried out for variations in temperature, gaseous KOH atmosphere, and fuel blending levels. Results were evaluated and compared using a qualitative slagging indicator previously proposed by the authors where an inverse relationship between deposition tendency and the viscosity of the molten fraction of the ash was established. The results were also compared with a set of co-firing experiments performed in a pilot-scale (0.4 MW) experimental combustion furnace. In general, the co-firing of woody biomass would likely increase the slagging tendency via the increased formation of low-viscosity melts. The fluxing behavior of biomass-ash potentially reduces the viscosity of the Fe-rich aluminosilicate melt and intensifies deposition. However, the results also revealed that there are certain conditions where deposition tendency may decrease via the formation of high-melting-point alkali-containing solid phases (e.g., leucite).
  •  
3.
  • Bjurling, Oscar, et al. (author)
  • Enabling Human-Autonomy Teaming in Aviation : A Framework to Address Human Factors in Digital Assistants Design
  • 2024
  • In: Journal of Physics, Conference Series. - : Institute of Physics. - 1742-6588 .- 1742-6596. ; 2716
  • Journal article (peer-reviewed)abstract
    • The introduction of artificial intelligence (AI) tools in aviation necessitates more research into human-autonomy teaming in these domain settings. This paper describes the development of a design framework for supporting Human Factors novices in considering human factors, improving human-autonomy collaboration, and maintaining safety when developing AI tools for aviation settings. Combining elements of Hierarchical Task Analysis, Coactive Design, and Types and Levels of Autonomy, the design framework provides guidance in three phases: modelling and understanding the existing system and associated tasks; producing a new function allocation for optimal Human-Autonomy Teaming (HAT); and assessing HAT-related risks of the proposed design. In this framework, designers generate a comprehensive set of design considerations to support subsequent development processes. Framework limitations and future research avenues are discussed. 
  •  
4.
  • Klaproth, T., et al. (author)
  • Tuning the electronic structure of the trichloride honeycomb lattice by transition metal substitution
  • 2022
  • In: Physical Review Materials. - 2475-9953. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Transition metal trichlorides show peculiar and versatile magnetic properties. Whereas CrCl3 is a layered antiferromagnet with potential applications as an ultrathin two-dimensional magnet, α−RuCl3 may host a spin-liquid state driven by Kitaev interactions. The interest to control their material properties by chemical modifications is immense, both from an application related and from a fundamental point of view. Here, by studying CrCl3, Cr0.5Ru0.5Cl3, and α−RuCl3 by photoemission and electron energy-loss spectroscopy, we find that transition metal substitution changes the optical properties of the host without compromising its underlying electronic structure. It does so by a Cr–Ru related charge transfer process across the Mott gap effectively opening up a new absorption channel below the principal gap edge of CrCl3. The Cr and Ru valencies as well as the respective valence band density of states remain stable for the mixed Cr0.5Ru0.5Cl3 compound. Our study underlines the potential of transition metal substitution as a means of material engineering of trichlorides.
  •  
5.
  • Michel, M., et al. (author)
  • Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function
  • 2022
  • In: Science. - Stockholm : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1471-1476
  • Journal article (peer-reviewed)abstract
    • Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed b,d-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging. © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
  •  
6.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
7.
  • Broderick, Avery E., et al. (author)
  • Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
  •  
8.
  • Eatough, Ralph P., et al. (author)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
9.
  • Farah, Joseph, et al. (author)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
10.
  • Georgiev, Boris, et al. (author)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15
Type of publication
journal article (13)
research review (2)
Type of content
peer-reviewed (15)
Author/Editor
Kim, Jae-Young (6)
Akiyama, Kazunori (6)
Alberdi, Antxon (6)
Alef, Walter (6)
Ball, David (6)
Barrett, John (6)
show more...
Bintley, Dan (6)
Blackburn, Lindy (6)
Brissenden, Roger (6)
Britzen, Silke (6)
Broderick, Avery E. (6)
Bronzwaer, Thomas (6)
Byun, Do Young (6)
Chan, Chi Kwan (6)
Chatterjee, Koushik (6)
Chen, Ming Tang (6)
Chen, Yongjun (6)
Christian, Pierre (6)
Conway, John, 1963 (6)
Cordes, James M. (6)
Cui, Yuzhu (6)
Davelaar, Jordy (6)
Dempsey, Jessica (6)
Desvignes, Gregory (6)
Eatough, Ralph P. (6)
Fromm, Christian M. (6)
Galison, Peter (6)
Gammie, Charles F. (6)
Gentaz, Olivier (6)
Gu, Minfeng (6)
Hecht, Michael H. (6)
Ho, Luis C. (6)
Ho, Paul (6)
Huang, Chih Wei L. (6)
Huang, Lei (6)
Inoue, Makoto (6)
James, David J. (6)
Jannuzi, Buell T. (6)
Jeter, Britton (6)
Jiang, Wu (6)
Johnson, Michael D. (6)
Jung, Taehyun (6)
Karami, Mansour (6)
Kawashima, Tomohisa (6)
Kim, Junhan (6)
Kim, Jongsoo (6)
Koay, Jun Yi (6)
Koch, Patrick M. (6)
Koyama, Shoko (6)
Kuo, Cheng Yu (6)
show less...
University
Chalmers University of Technology (9)
Royal Institute of Technology (2)
Uppsala University (2)
Stockholm University (2)
RISE (2)
Umeå University (1)
show more...
Luleå University of Technology (1)
Linköping University (1)
Lund University (1)
Karolinska Institutet (1)
show less...
Language
English (15)
Research subject (UKÄ/SCB)
Engineering and Technology (15)
Natural sciences (12)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view