SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Raza Ali)) srt2:(2020-2024) srt2:(2020)"

Search: (WFRF:(Raza Ali)) srt2:(2020-2024) > (2020)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hameed, Zeeshan, et al. (author)
  • A Comprehensive Review on Thermal Coconversion of Biomass, Sludge, Coal, and Their Blends Using Thermogravimetric Analysis
  • 2020
  • In: Journal of Chemistry. - : Hindawi Publishing Corporation. - 2090-9063 .- 2090-9071. ; 2020
  • Research review (peer-reviewed)abstract
    • Lignocellulosic biomass is a vital resource for providing clean future energy with a sustainable environment. Besides lignocellulosic residues, nonlignocellulosic residues such as sewage sludge from industrial and municipal wastes are gained much attention due to its large quantities and ability to produce cheap and clean energy to potentially replace fossil fuels. These cheap and abundantly resources can reduce global warming owing to their less polluting nature. The low-quality biomass and high ash content of sewage sludge-based thermal conversion processes face several disadvantages towards its commercialization. Therefore, it is necessary to utilize these residues in combination with coal for improvement in energy conversion processes. As per author information, no concrete study is available to discuss the synergy and decomposition mechanism of residues blending. The objective of this study is to present the state-of-the-art review based on the thermal coconversion of biomass/sewage sludge, coal/biomass, and coal/sewage sludge blends through thermogravimetric analysis (TGA) to explore the synergistic effects of the composition, thermal conversion, and blending for bioenergy production. This paper will also contribute to detailing the operating conditions (heating rate, temperature, and residence time) of copyrolysis and cocombustion processes, properties, and chemical composition that may affect these processes and will provide a basis to improve the yield of biofuels from biomass/sewage sludge, coal/sewage sludge, and coal/biomass blends in thermal coconversion through thermogravimetric technique. Furthermore, the influencing factors and the possible decomposition mechanism are elaborated and discussed in detail. This study will provide recent development and future prospects for cothermal conversion of biomass, sewage, coal, and their blends.
  •  
2.
  • Abodayeh, Kamaleldin, et al. (author)
  • Stochastic Numerical Analysis for Impact of Heavy Alcohol Consumption on Transmission Dynamics of Gonorrhoea Epidemic
  • 2020
  • In: Computers, Materials and Continua. - : TECH SCIENCE PRESS. - 1546-2218 .- 1546-2226. ; 62:3, s. 1125-1142
  • Journal article (peer-reviewed)abstract
    • This paper aims to perform a comparison of deterministic and stochastic models. The stochastic modelling is a more realistic way to study the dynamics of gonorrhoea infection as compared to its corresponding deterministic model. Also, the deterministic solution is itself mean of the stochastic solution of the model. For numerical analysis, first, we developed some explicit stochastic methods, but unfortunately, they do not remain consistent in certain situations. Then we proposed an implicitly driven explicit method for stochastic heavy alcohol epidemic model. The proposed method is independent of the choice of parameters and behaves well in all scenarios. So, some theorems and simulations are presented in support of the article.
  •  
3.
  • Ali, Amjad, et al. (author)
  • Electrochemical Analysis of a Titanate-Based Anode for Direct Carbon Fuel Cells
  • 2020
  • In: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 3:9, s. 9182-9189
  • Journal article (peer-reviewed)abstract
    • The grand challenge in the commercialization of direct carbon fuel cell (DCFC) technology is the development of a cost-effective and thermally stable material, which facilitates fast ionic and electronic conduction and exhibits good resistance for carbon deposition at electrodes. Titanate-based materials have high ionic and electronic conductivity at higher temperature. Perovskite anodes based on titanate and transition metals show a good catalytic activity for hydrocarbon fuels. Therefore, perovskite materials, based on lanthanum strontium and copper titanate La0.4Sr0.6CuxTi1-3O3-delta (x = 0.02, 0.04, 0.06, and 0.08), were synthesized using the sol-gel method and examined as anodes for DCFCs. The powders were analyzed using various characterization techniques. X-ray diffraction shows that the material has a cubic perovskite structure. The conductivity of the synthesized powder LS8CT was found to be 4.21 Scm(-1) at 600 degrees C. The button cell developed using LS8CT exhibits a performance of 61mWcm 72. at 600 degrees C. The computational study using the Wien2k code has been performed, which shows that the Fermi level is at nonzero density of states (DOS) and reveals that the compound is metallic in nature. Therefore, no forbidden region occurs between the maxima of the valence band and minima of the conduction band. Results of DOS confirm the metallic nature of the compound. On the basis of theoretical and experimental studies, it can be depicted that substitution of Cu in La0.3Sr0.7TiO3 increases the conductivity. Therefore, a La0.4Sr0.6CuxTi1-xO3-delta perovskite material can be used as an anode for DCFCs.
  •  
4.
  • Arslan, Muhammad, et al. (author)
  • Impact of Varying Load Conditions and Cooling Energy Comparison of a Double-Inlet Pulse Tube Refrigerator
  • 2020
  • In: Processes. - : MDPI. - 2227-9717. ; 8:3
  • Journal article (peer-reviewed)abstract
    • Modeling and optimization of a double-inlet pulse tube refrigerator (DIPTR) is very difficult due to its geometry and nature. The objective of this paper was to optimize-DIPTR through experiments with the cold heat exchanger (CHX) along the comparison of cooling load with experimental data using different boundary conditions. To predict its performance, a detailed two-dimensional DIPTR model was developed. A double-drop pulse pipe cooler was used for solving continuity, dynamic and power calculations. External conditions for applicable boundaries include sinusoidal pressure from an end of the tube from a user-defined function and constant temperature or limitations of thermal flux within the outer walls of exchanger walls under colder conditions. The results of the system's cooling behavior were reported, along with the connection between the mass flow rates, heat distribution along pulse tube and cold-end pressure, the cooler load's wall temp profile and cooler loads with varied boundary conditions i.e. opening of 20% double-inlet and 40-60% orifice valves, respectively. Different loading conditions of 1 and 5W were applied on the CHX. At 150 K temperature of the cold-end heat exchanger, a maximum load of 3.7 W was achieved. The results also reveal a strong correlation between computational fluid dynamics modeling results and experimental results of the DIPTR.
  •  
5.
  • Hussain, Jawad, et al. (author)
  • Modeling and simulation of planar SOFC to study the electrochemical properties
  • 2020
  • In: Current applied physics. - : ELSEVIER. - 1567-1739 .- 1878-1675. ; 20:5, s. 660-672
  • Journal article (peer-reviewed)abstract
    • In this paper, modeling and simulations are carried out using COMSOL Multiphysics. A three-dimensional model is developed for a planar intermediate temperature (IT) solid oxide fuel cell (SOFC). A parametric study has been carried out to analyze the performance of SOFC. Simulations reveal some promising features and enhanced performance of SOFC. It is shown that the maximum value of power (4-3.3) kW/m(2) still remains higher with significant rise of temperature (600 degrees C-1000 degrees C), nearly 0.15 kW/m(2) is the very small loss of power per 100 degrees C rise of temperature. Results have shown that the electrolytic current density is (6700-5500) A/m(2) for peak value of power (4-3.3) kW/m(2) with increase of temperature (600 degrees C-1000 degrees C). For model validation we have plotted a comparison of average current density.
  •  
6.
  • Rafique, Asia, et al. (author)
  • Design and Modeling of a Fuel Cell System Using Biomass Feedstock as a Biofuel
  • 2020
  • In: Fuel Cells. - : Wiley. - 1615-6846 .- 1615-6854. ; 20:1, s. 89-97
  • Journal article (peer-reviewed)abstract
    • This paper aims to model ceramic fuel cell system based on low-temperature planar solid oxide fuel cell (SOFC) different biogases fuels from multiple biomasses, that is, animal waste, redwood, rice husk and sugar cane. Biomass is a better choice for the generation of energy globally. Therefore, there is a focus on the most available biomass resources in the country that can be used as clean energy sources. This developed model is designed by thermodynamic analysis and electrochemical calculations using MATLAB. The designed model is a lumped parameter model based on the steady-state one-dimensional flow. In this model, all calculated power and flow rate values were kept as positive values. Also, the system is considered to be free of leaks, and heat loss is neglected. The operating temperature and pressure are assumed to be 500–700 °C and the partial pressure is set at three different pressures; P1 (1 bar), P2 (2 bar), and P3 (3 bar), respectively, and fuel utilization factor is 80%. It is observed that the best performance is obtained with animal-waste based biogas at 700 °C and P3 (3 bar).
  •  
7.
  • Rafique, Asia, et al. (author)
  • Multioxide phase-based nanocomposite electrolyte (M@SDC where M = Zn2+ / Ba2+/ La2+/Zr-2/Al3+) materials
  • 2020
  • In: Ceramics International. - : ELSEVIER SCI LTD. - 0272-8842 .- 1873-3956. ; 46:52, s. 6882-6888
  • Journal article (peer-reviewed)abstract
    • This paper deals with the development of a highly dense and stable electrolyte on the base of nanoionics oxide interface theory. This gives a comparative study of two-phase nanocomposite electrolytes that are developed for low temperature solid oxide fuel cells (LT-SOFCs). These nanocomposites are synthesised with different oxides, which are coated on the doped ceria that showed high oxide ion mobility for LT-SOFCs. These novel two-phase nanocomposite oxide ionic conductors (MCe0.8Sm0.2O2-MO2, where M = Zn2+/Ba2+/La3+/Zr2+/Al3+) were synthesised by a co-precipitation method. The interface study between these two phases was analysed by electrochemical impedance spectroscopy (EIS), while ionic conductivities were measured with DC conductivity (four probe method). The nanocomposite electrolytes exhibited higher conductivities with the increase of concentration of coated oxides but decreased at a certain level. The structural or morphological properties of the nanocomposite electrolytes were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal stability was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The maximum performance of 590 mW/cm(2) at 550 degrees C was obtained for the Zn@SDC based cell, and the rest of the coated samples Ba@SDC, La@SDC, Zr@SDC and Al@SDC based cells showed values of 550 mW/cm(2), 540 mW/cm(2), 450 mW/cm(2), 340 mW/cm(2), respectively, with hydrogen as a fuel. Therefore, the coated-SDC based nanocomposite materials are a good approach for lowering the operating temperature to achieve the challenges of the solid oxide fuel cells (SOFC). These two-phase nanocomposite electrolytes satisfy the all requirements which one electrolyte should have, like high ionic conduction, thermodynamic stability and negligible electronic conduction.
  •  
8.
  • Zahra, M., et al. (author)
  • Tailoring the ions and bandgaps in a novel semi-ionic energy conversion device for electrochemical performance
  • 2020
  • In: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Journal article (peer-reviewed)abstract
    • The new semi-ionic energy conversion (SIEC) device has attracted remarkable attention owing to its clean and environmentally friendly applications. In this device, novel materials and mechanisms have been explored using electronic and ionic conductor materials. The tuning effect of the ions and bandgap has been studied to investigate the structural, optical, and electrochemical performance of the material. Composite materials, gadolinium-doped ceria-cadmium-doped ZnO (GDC-ZnCdO), based on ionic gadolinium-doped ceria (GDC) and semiconductor (ZnCdO) in molar ratios of 1:4, 2:3, 3:2, and 4:1 have been prepared by a wet chemical route. The crystalline structure of the GDC-ZnCdO was studied and found to have cubic and hexagonal wurtzite phases with an average crystallite size of 30–40 nm. The morphology of the prepared composite materials is a homogenous and porous structure. It was found that the addition of GDC increases the transmittance and shows a red shift in the bandgap from 2.70 eV to 2.46 eV. The maximum conductivity of 2.0 S/cm1 was achieved for the sample 4GDC-1ZnCdO at 700°C. Electrochemical impedance spectra and X-ray photoelectron spectroscopy analysis were performed to investigate the electrochemical properties of the prepared semi-ionic composite materials. The SIEC device showed a much better performance than a conventional solid oxide fuel cell. The maximum open-circuit voltage (OCV) of about 1.013 Vand power density of 0.65 W/cm2 were obtained using hydrogen fuel at 600°C, as compared with a conventional fuel cell with 0.72 V and 0.27 W/cm2, respectively. Hence, the results reveal that the ions and bandgap tuning play a crucial role in fuel cell functions. Therefore, it has been determined that the bandgap can be tuned to obtain a better and more stable performance of the SIEC device. This study presents a novel approach to enhance the electrochemical performance with the tailoring of the new semi-ionic materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view