SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Rominger Axel)) srt2:(2015-2019)"

Search: (WFRF:(Rominger Axel)) > (2015-2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Morbelli, Silvia, et al. (author)
  • Metabolic patterns across core features in dementia with lewy bodies
  • 2019
  • In: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 85:5, s. 715-725
  • Journal article (peer-reviewed)abstract
    • ObjectiveTo identify brain regions whose metabolic impairment contributes to dementia with Lewy bodies (DLB) clinical core features expression and to assess the influence of severity of global cognitive impairment on the DLB hypometabolic pattern.MethodsBrain fluorodeoxyglucose positron emission tomography and information on core features were available in 171 patients belonging to the imaging repository of the European DLB Consortium. Principal component analysis was applied to identify brain regions relevant to the local data variance. A linear regression model was applied to generate core‐feature–specific patterns controlling for the main confounding variables (Mini‐Mental State Examination [MMSE], age, education, gender, and center). Regression analysis to the locally normalized intensities was performed to generate an MMSE‐sensitive map.ResultsParkinsonism negatively covaried with bilateral parietal, precuneus, and anterior cingulate metabolism; visual hallucinations (VH) with bilateral dorsolateral–frontal cortex, posterior cingulate, and parietal metabolism; and rapid eye movement sleep behavior disorder (RBD) with bilateral parieto‐occipital cortex, precuneus, and ventrolateral–frontal metabolism. VH and RBD shared a positive covariance with metabolism in the medial temporal lobe, cerebellum, brainstem, basal ganglia, thalami, and orbitofrontal and sensorimotor cortex. Cognitive fluctuations negatively covaried with occipital metabolism and positively with parietal lobe metabolism. MMSE positively covaried with metabolism in the left superior frontal gyrus, bilateral–parietal cortex, and left precuneus, and negatively with metabolism in the insula, medial frontal gyrus, hippocampus in the left hemisphere, and right cerebellum.InterpretationRegions of more preserved metabolism are relatively consistent across the variegate DLB spectrum. By contrast, core features were associated with more prominent hypometabolism in specific regions, thus suggesting a close clinical–imaging correlation, reflecting the interplay between topography of neurodegeneration and clinical presentation in DLB patients. Ann Neurol 2019;85:715–725
  •  
2.
  • Sehlin, Dag, 1976-, et al. (author)
  • Engineered antibodies : new possibilities for brain PET?
  • 2019
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : SPRINGER. - 1619-7070 .- 1619-7089. ; 46:13, s. 2848-2858
  • Research review (peer-reviewed)abstract
    • Almost 50 million people worldwide are affected by Alzheimer's disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand's pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
  •  
3.
  • Suárez-Calvet, Marc, et al. (author)
  • sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers.
  • 2016
  • In: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 8:5, s. 466-476
  • Journal article (peer-reviewed)abstract
    • TREM2 is an innate immune receptor expressed on the surface of microglia. Loss-of-function mutations of TREM2 are associated with increased risk of Alzheimer's disease (AD). TREM2 is a type-1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross-sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non-AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho-tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view