SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Sakai M)) srt2:(2020-2024) srt2:(2021)"

Search: (WFRF:(Sakai M)) srt2:(2020-2024) > (2021)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  •  
4.
  •  
5.
  • Piras, F, et al. (author)
  • White matter microstructure and its relation to clinical features of obsessive-compulsive disorder: findings from the ENIGMA OCD Working Group
  • 2021
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1, s. 173-
  • Journal article (peer-reviewed)abstract
    • Microstructural alterations in cortico-subcortical connections are thought to be present in obsessive–compulsive disorder (OCD). However, prior studies have yielded inconsistent findings, perhaps because small sample sizes provided insufficient power to detect subtle abnormalities. Here we investigated microstructural white matter alterations and their relation to clinical features in the largest dataset of adult and pediatric OCD to date. We analyzed diffusion tensor imaging metrics from 700 adult patients and 645 adult controls, as well as 174 pediatric patients and 144 pediatric controls across 19 sites participating in the ENIGMA OCD Working Group, in a cross-sectional case-control magnetic resonance study. We extracted measures of fractional anisotropy (FA) as main outcome, and mean diffusivity, radial diffusivity, and axial diffusivity as secondary outcomes for 25 white matter regions. We meta-analyzed patient-control group differences (Cohen’s d) across sites, after adjusting for age and sex, and investigated associations with clinical characteristics. Adult OCD patients showed significant FA reduction in the sagittal stratum (d = −0.21, z = −3.21, p = 0.001) and posterior thalamic radiation (d = −0.26, z = −4.57, p < 0.0001). In the sagittal stratum, lower FA was associated with a younger age of onset (z = 2.71, p = 0.006), longer duration of illness (z = −2.086, p = 0.036), and a higher percentage of medicated patients in the cohorts studied (z = −1.98, p = 0.047). No significant association with symptom severity was found. Pediatric OCD patients did not show any detectable microstructural abnormalities compared to controls. Our findings of microstructural alterations in projection and association fibers to posterior brain regions in OCD are consistent with models emphasizing deficits in connectivity as an important feature of this disorder.
  •  
6.
  •  
7.
  • Morii, Kaho, et al. (author)
  • The ALMA Survey of 70 mu m Dark High-mass Clumps in Early Stages (ASHES). IV. Star Formation Signatures in G023.477
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 923:2
  • Journal article (peer-reviewed)abstract
    • With a mass of similar to 1000 M (circle dot) and a surface density of similar to 0.5 g cm(-2), G023.477+0.114, also known as IRDC 18310-4, is an infrared dark cloud (IRDC) that has the potential to form high-mass stars and has been recognized as a promising prestellar clump candidate. To characterize the early stages of high-mass star formation, we have observed G023.477+0.114 as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Survey of 70 mu m Dark High-mass Clumps in Early Stages. We have conducted similar to 1.'' 2 resolution observations with ALMA at 1.3 mm in dust continuum and molecular line emission. We have identified 11 cores, whose masses range from 1.1 to 19.0 M (circle dot). Ignoring magnetic fields, the virial parameters of the cores are below unity, implying that the cores are gravitationally bound. However, when magnetic fields are included, the prestellar cores are close to virial equilibrium, while the protostellar cores remain sub-virialized. Star formation activity has already started in this clump. Four collimated outflows are detected in CO and SiO. H2CO and CH3OH emission coincide with the high-velocity components seen in the CO and SiO emission. The outflows are randomly oriented for the natal filament and the magnetic field. The position-velocity diagrams suggest that episodic mass ejection has already begun even in this very early phase of protostellar formation. The masses of the identified cores are comparable to the expected maximum stellar mass that this IRDC could form (8-19 M (circle dot)). We explore two possibilities on how IRDC G023.477+0.114 could eventually form high-mass stars in the context of theoretical scenarios.
  •  
8.
  • Tafoya, Daniel, 1981, et al. (author)
  • The ALMA Survey of 70 mu m Dark High-mass Clumps in Early Stages (ASHES). III. A Young Molecular Outflow Driven by a Decelerating Jet
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 913:2
  • Journal article (peer-reviewed)abstract
    • We present a spatio-kinematical analysis of the CO (J = 2 -> 1) line emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA), of the outflow associated with the most massive core, ALMA1, in the 70 mu m dark clump G010.991-00.082. The position-velocity (PV) diagram of the molecular outflow exhibits a peculiar S-shaped morphology that has not been seen in any other star-forming region. We propose a spatio-kinematical model for the bipolar molecular outflow that consists of a decelerating high-velocity component surrounded by a slower component whose velocity increases with distance from the central source. The physical interpretation of the model is in terms of a jet that decelerates as it entrains material from the ambient medium, which has been predicted by calculations and numerical simulations of molecular outflows in the past. One side of the outflow is shorter and shows a stronger deceleration, suggesting that the medium through which the jet moves is significantly inhomogeneous. The age of the outflow is estimated to be tau approximate to 1300 yr, after correction for a mean inclination of the system of approximate to 57 degrees.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view