SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Wierzbicka Aneta)) pers:(Krais Annette M) srt2:(2021)"

Search: (WFRF:(Wierzbicka Aneta)) pers:(Krais Annette M) > (2021)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Krais, Annette M., et al. (author)
  • Biomarkers after Controlled Inhalation Exposure to Exhaust from Hydrogenated Vegetable Oil (HVO)
  • 2021
  • In: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1661-7827 .- 1660-4601. ; 18:12
  • Journal article (peer-reviewed)abstract
    • Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3 ) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.
  •  
2.
  • Scholten, Rebecca Harnung, et al. (author)
  • Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans
  • 2021
  • In: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 95:10, s. 3407-3416
  • Journal article (peer-reviewed)abstract
    • Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view