SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0278 6826 OR L773:1521 7388 srt2:(2020-2023)"

Search: L773:0278 6826 OR L773:1521 7388 > (2020-2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alsved, Malin, et al. (author)
  • Exhaled respiratory particles during singing and talking
  • 2020
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 1521-7388 .- 0278-6826. ; 54:11, s. 245-1248
  • Journal article (peer-reviewed)abstract
    • Choir singing has been suspended in many countriesduring the Covid-19 pandemic due to incidental reportsof disease transmission. The mode of transmission has been attributed to exhaled droplets, but with the exception of a study on tuberculosis from1968, there is presently almost no scientific evidence ofincreased particle emissions from singing. A substantial number of studies have,however, investigated aerosols emitted from breathing,talking, coughing and sneezing. It has also been shown that justnormal breathing over time can generate more viablevirus aerosol than coughing, since the latter is a less fre-quent activity.Compared to talking, singing often involves continu-ous voicing, higher sound pressure, higher frequencies,deeper breaths, higher peak airflows and more articu-lated consonants. All these factors are likely to increaseexhaled emissions.The aim of this study was to investigate aerosol anddroplet emissions during singing, as compared to talking and breathing. We also examined the presence of SARS-CoV-2 in the air from breathing, talking and singing,and the efficacy of face masks to reduce emissions. In this study we defined aerosol particles as having a drysize in the range 0.5–10mm. Although debatable from anaerosol physics point of view, a cutoff diameter between5 and 10mm is normally used in medicine for classifica-tion of aerosol versus droplet route of transmission. Droplets are here defined as exhaled particles, frommicron size with no upper size limit, and measured dir-ectly at the mouth before complete evaporation, thuspartly in liquid phase.
  •  
2.
  • Alsved, Malin, et al. (author)
  • Natural sources and experimental generation of bioaerosols : Challenges and perspectives
  • 2020
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 54:5, s. 547-571
  • Research review (peer-reviewed)abstract
    • Experimental aerosol generation methods aim to represent natural processes; however, the complexity is not always captured and unforeseen variability may be introduced into the data. The current practices for natural and experimental aerosol generation techniques are reviewed here. Recommendations for best practice are presented, and include characterization of starting material and spray fluid, rational selection of appropriate aerosol generators, and physical and biological characterization of the output aerosol. Reporting of bioaerosol research should capture sufficient detail to aid data interpretation, reduce variation, and facilitate comparison between research laboratories. Finally, future directions and challenges in bioaerosol generation are discussed.
  •  
3.
  • Guo, Yong, et al. (author)
  • Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation : A steady-state numerical investigation
  • 2020
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 54:8, s. 869-879
  • Journal article (peer-reviewed)abstract
    • Respiratory droplets are bioaerosols that originate from the respiratory tract. Knowing their deposition characteristics during exhalation would facilitate the understanding of the source of large respiratory droplets and their importance in the spread of respiratory infectious diseases. In this study, computational fluid dynamics is used to simulate the motion and deposition of droplets released from either trachea or bronchi in a realistic reconstruction of the human respiratory tract. Influences of airflow structures and locations of droplet generation on droplet deposition are studied, and droplets with diameters between 1 and 50 mu m are examined. The deposition of droplets is found to be influenced mainly by the droplet diameter and the flow rate of exhalation. The number of droplets released from the trachea or bronchi that can escape into the environment decreases as the flow rate increases. When the flow rate is low (10 L/min), the critical diameter of droplets generated in the lower respiratory system that can escape into the air is approximately 12 mu m, but this diameter is approximately 5 mu m when the flow rate is medium (30 to 60 L/min) or large (90 L/min). The larynx is the dominant site of deposition for droplets smaller than the critical diameter, while trachea and bronchus are more important locations that account for the deposition of larger droplets. This study indicates that the lower respiratory tract is an important source of fine droplets (<5 mu m) in indoor environments, and larger droplets probably originate from the upper respiratory tract, which needs further investigation. Copyright
  •  
4.
  • Malmborg, Vilhelm, et al. (author)
  • Characteristics of BrC and BC emissions from controlled diffusion flame and diesel engine combustion
  • 2021
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 55:7, s. 769-784
  • Journal article (peer-reviewed)abstract
    • Constraining the climate impact of particulate brown carbon (BrC) will require identification of formation mechanisms and isolation of its different components to allow for source apportionment. For fresh combustion aerosols, the light absorption characteristics and the Absorption Ångstrom Exponent (AAE) are principally controlled by the combustion conditions in which the particles formed and evolved. We investigated the influence of combustion temperatures on the BrC or black carbon (BC) emission characteristics for a miniCAST soot generator (propane fuel) and a modern heavy-duty diesel engine (petroleum diesel and two renewable diesel fuels). Changes in the AAE, mass spectral signatures, and thermal-optical characteristics were studied. We show that changing operating parameters to gradually reduce the combustion temperatures in these two fundamentally different combustion devices result in a regression from BC dominated to BrC dominated particle emissions. The regression toward BrC was associated with: (1) an increasing mass fraction of particulate non-refractory polycyclic aromatic hydrocarbons (PAHs), (2) an increasing fraction of refractory organic carbon, (3) more curved soot nanostructures and shorter fringe lengths, and (4) increased signal from (refractory) large carbon fragments in IR laser-vaporization aerosol mass spectra. Based on these results we argue that fresh BrC dominated combustion aerosols are attributed to primary emissions from low temperature combustion, highlighting the influence of refractory constituents and soot nanostructure. Higher temperatures favor the growth of conjugated polyaromatic structures in the soot, a progression hypothesized to control the evolution from BrC to BC character of the emitted aerosols.
  •  
5.
  • Preger, Calle, et al. (author)
  • Predicting the deposition spot radius and the nanoparticle concentration distribution in an electrostatic precipitator
  • 2020
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 54:6, s. 718-728
  • Journal article (peer-reviewed)abstract
    • Deposition of aerosol nanoparticles using an electrostatic precipitator is widely used in the aerosol community. Despite this, basic knowledge regarding what governs the deposition has been missing. This concerns the prediction of the size of the particle collection zone, but also, perhaps more importantly, prediction of the nanoparticle concentration distribution on the substrate, both of which are necessary to achieve faster and more precise deposition. In this article, we have used COMSOL Multiphysics simulations, experimental depositions, and two analytical models to describe the deposition. Based on that, we propose a simple equation that can be used to predict the size of the deposition spot as well as the particle concentration on the substrate. The equation we derive concludes that the size of the deposition spot only depends on the gas flow rate into the precipitator, and on the constant drift velocity of a particle in an electric field. The equation also displays that the deposited particle concentration is independent of the gas flow rate. Our general mathematical analysis has great applicability, as it can be used to model different geometries and different types of deposition methods than the one described in this article. We can therefore also propose that the drift velocity in this model easily could be replaced by another velocity acting on the particles at other deposition conditions, for instance, the thermophoretic velocity during thermophoretic deposition. This would result in the same dependence as presented in this article. Finally, we demonstrate analytically and through experiment that the particle distribution inside the spot will be homogenous and follows a top hat profile.
  •  
6.
  • Török, Sandra, et al. (author)
  • Influence of rapid laser heating on differently matured soot with double-pulse laser-induced incandescence
  • 2022
  • In: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 56:6, s. 488-501
  • Journal article (peer-reviewed)abstract
    • For accurate laser-induced incandescence (LII) measurements of soot properties it is of great importance to understand the nature of the physical processes involved during rapid laser heating. In this work, we investigate how well-characterized differently matured fresh soot from a soot generator responds to rapid laser heating. For this purpose, a double-pulse LII setup is used with 10 μs time separation between the pulses using various combinations of two common LII wavelengths (532 and 1064 nm). Detection is performed at two wavelength bands for fluorescence analysis, and additionally elastic light scattering is used for mass loss analysis during heating. We investigate how the LII signal changes with pre-heating laser energy, specifically by fluence curve analysis to estimate the influence of thermal annealing, sublimation and laser-induced fluorescence interference. It is shown that extensive absorption enhancement occurs for all types of soot as the soot is thermally annealed, which is manifested through decreasing dispersion coefficient ξ and an increasing absorption coefficient E(m,λ). When comparing young and mature soot, a much larger impact of sublimation can be observed in the fluence curves of the mature soot. Also, we observe an enhanced contribution of laser-induced fluorescence for the young soot when performing LII measurements using 532 nm, which is suggested to originate from vaporized carbon fragments with an aromatic structure. This work further shows the potential of utilizing double-pulse arrangements for increasing the detectability of poorly absorbing soot, but also it highlights the impact of laser heating on soot, which may be important to avoid interferences when performing soot diagnostics.
  •  
7.
  • Vasilatou, K., et al. (author)
  • Extending traceability in airborne particle size distribution measurements beyond 10 µm : Counting efficiency and unit-to-unit variability of four aerodynamic particle size spectrometers
  • 2023
  • In: Aerosol Science and Technology. - : Taylor and Francis Ltd.. - 0278-6826 .- 1521-7388. ; 57:1, s. 24-34
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to establish traceable number concentration measurements of airborne particles beyond 10 μm in particle size. To this end, the primary standards for particle number concentration at the National Metrology Institutes of Switzerland and Japan were further developed to extend their measurement capabilities. Details on the upgraded setup are provided. An inter-comparison of the two primary standards using an optical particle counter as transfer standard showed that these agree well within the stated uncertainties at polystyrene (PS) equivalent optical diameter of 15 µm. Subsequently, four Model 3321 (TSI Inc., USA) aerodynamic particle size spectrometers (APS) were calibrated against the primary standard of Switzerland using size-certified PS spheres with optical/aerodynamic diameter up to 20 µm as test aerosols. The counting efficiency profile and unit-to-unit variability of the APS units were determined. The results presented here can be useful for the analysis and interpretation of data collected by the different atmospheric aerosol networks worldwide. The outlined methodology can also be applied in the calibration of automated bio-aerosol monitors. © 2022 The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view