SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1355 2546 srt2:(2010-2014)"

Search: L773:1355 2546 > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adnan, Safdar, et al. (author)
  • Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V
  • 2012
  • In: Rapid prototyping journal. - : Emerald Group Publishing Limited. - 1355-2546 .- 1758-7670. ; 18:5, s. 401-408
  • Journal article (peer-reviewed)abstract
    • Purpose – Ti-6Al-4V is one of the most attractive materials being used in aerospace, automotive and medical implant industries. Electron beam melting (EBM) is one of the direct digital manufacturing methods to produce complex geometries of fully dense and near net shape parts. The EBM system provides an opportunity to built metallic objects with different processing parameter settings like beam current, scan speed, probe size on powder, etc. The purpose of this paper is to determine and understand the effect of part's thickness and variation in process parameter settings of the EBM system on surface roughness/topography of EBM fabricated Ti-6Al-4V metallic parts. Design/methodology/approach – A mathematical model based upon response surface methodology (RSM) is developed to study the variation of surface roughness with changing process parameter settings. Surface roughness of the test slabs produced with different parameter settings and thickness has been studied under confocal microscope. Response surface methodology was used to develop a multiple regression model to correlate the effect of variation in EBM process parameters settings and thickness of parts on surface roughness of EBM produced Ti-6Al-4V. Findings – It has been observed that every part produced by EBM system has detectable surface roughness. The surface roughness parameter Ra varies between 1-20 µm for different samples depending upon the process parameter setting and thickness. The Ra value increases with increasing sample thickness and beam current, and decreases with increase in offset focus and scan speed. Originality/value – Surface roughness is related to wear and friction property of the material and hence is related to the life time and performance of the part. Surface roughness is an important property of any material to be considered as biomaterial. The surface roughness of the material depends upon the manufacturing method and environment and hence it is controllable either during fabrication or by post processing. From the 1st order regression model developed in this study, it is also evident that sample thickness, scan speed and beam current have relatively more effect on roughness value then the offset focus. With the model obtained equation, a designer can subsequently select the best combination of sample thickness and process parameter values to achieve desired surface roughness.
  •  
2.
  • Cronskär, Marie, et al. (author)
  • Production of Customized Hip Stem Prostheses : a Comparison Between Machining and Additive Manufacturing
  • 2013
  • In: Rapid prototyping journal. - 1355-2546 .- 1758-7670. ; 19:5, s. 365-372
  • Journal article (peer-reviewed)abstract
    • Purpose - The purpose of this paper is to study the use of the additive manufacturing (AM) method, electron beam melting (EBM), for manufacturing of customized hip stems. The aim is to investigate EBM's feasibility and commercial potential in comparison with conventional machining, and to map out advantages and drawbacks of using EBM in this application. One part of the study concerns the influence on the fatigue properties of the material, when using the raw surface directly from the EBM machine, in parts of the implant.Design/methodology/approach - The research is based on a case study of manufacturing a batch of seven individually adapted hip stems. The stems were manufactured both with conventional machining and with EBM technology and the methods were compared according to the costs of materials, time for file preparation and manufacturing. In order to enhance bone ingrowths in the medial part of the stem, the raw surface from EBM manufacturing is used in that area and initial fatigue studies were performed, to get indications on how this surface influences the fatigue properties.Findings - The cost reduction due to using EBM in this study was 35 per cent. Fatigue tests comparing milled test bars with raw surfaced bars indicate a reduction of the fatigue limit by using the coarse surface.Originality/value - The paper presents a detailed comparison of EBM and conventional machining, not seen in earlier research. The fatigue tests of raw EBM-surfaces are interesting since the raw surface has shown to enhance bone ingrowths and therefore is suitable to use in some medical applications.
  •  
3.
  •  
4.
  • De Maria, Carmelo, et al. (author)
  • Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications
  • 2014
  • In: Rapid Prototyping Journal. - 1355-2546. ; 20:6, s. 490-498
  • Journal article (peer-reviewed)abstract
    • Purpose – This paper aims to develop a novel micro-ablation system to realise micrometric and well-defined hydrogel structures. To engineer a tissue it is necessary to evaluate several aspects, such as cell-cell and cell-substrate interactions, its micro-architecture and mechanical stimuli that act on it. For this reason, it is important to fabricate a substrate which presents a microtopology similar to natural tissue and has chemical and mechanical properties able to promote cell functions. In this paper, well-defined hydrogel structures embedding cells were microfabricated using a purposely developed technique, micro-laser ablation, based on a thulium laser. Its working parameters (laser power emission, stepper motor velocity) were optimised to produce shaded “serpentine” pattern on a hydrogel film. Design/methodology/approach – In this study, initially, swelling/contraction tests on agarose and alginate hydrogel in different solutions of main components of cell culture medium were performed and were compared with the MECpH model. This comparison matched with good approximation experimental measurements. Once known how hydrogel changed its topology, microstructures with a well-defined topology were realised using a purposely developed micro-laser ablation system design. S5Y5 neuroblastoma cell lines were embedded in hydrogel matrix and the whole structure was ablated with a laser microfabrication system. The cells did not show damages due to mechanical stress present in the hydrogel matrix and to thermal increase induced by the laser beam. Findings – The hydrogel structure is able to reproduce extracellular matrix. Initially, the hydrogel swelling/contraction in different solutions, containing the main components of the most common cell culture media, was analysed. This analysis is important to evaluate if cell culture environment could alter microtopology of realised structures. Then, the same topology was realised on hydrogel film embedding neuronal cells and the cells did not show damages due to mechanical stress present in the hydrogel matrix and to thermal increase induced by the laser beam. The interesting obtained results could be useful to realise well-defined microfabricated hydrogel structures embedding cells to guide tissue formation Originality/value – The originality of this paper is the design and realisation of a 3D microfabrication system able to microfabricate hydrogel matrix embedding cells without inducing cell damage. The ease of use of this system and its potential modularity render this system a novel potential device for application in tissue engineering and regenerative medicine area.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view