SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1477 2566 srt2:(2015-2019)"

Search: L773:1477 2566 > (2015-2019)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Beljanski, Vladimir, et al. (author)
  • Pleiotropic roles of autophagy in stem cell-based therapies
  • 2019
  • In: Cytotherapy. - : ELSEVIER SCI LTD. - 1465-3249 .- 1477-2566. ; 21:4, s. 380-392
  • Research review (peer-reviewed)abstract
    • Stem cells (SCs) have been proven to possess regenerative and immunomodulatory properties and can be used to treat diseases that involve loss of cells due to tissue damage or inflammation. For this approach to succeed, SCs or their derivatives should be able to engraft in the target tissue at least for a short period of time. Unfortunately, once injected, therapeutic SCs will encounter a hostile environment, including hypoxia, lack of nutrients and stromal support, and cells may also be targeted and rejected by the immune system. Therefore, SC's stress-response mechanisms likely play a significant role in survival of injected cells and possibly contribute to their therapeutic efficacy. Autphagy, a stress-response pathway, is involved in many different cellular processes, such as survival during hypoxia and nutrient deprivation, cellular differentiation and de-differentiation, and it can also contribute to their immunovisibility by regulating antigen presentation and cytokine secretion. Autophagy machinery interacts with many proteins and signaling pathways that regulate SC properties, including PI3K/Akt, mammalian target of rapamycin (mTOR), Wnt, Hedgehog and Notch, and it is also involved in regulating intracellular reactive oxygen species (ROS) levels. In this review, we contend that autophagy is an important therapeutic target that can be used to improve the outcome of SC-based tissue repair and regeneration. Further research should reveal whether inhibition or stimulation of autophagy increases the therapeutic utility of SCs and it should also identify appropriate therapeutic regimens that can be applied in the clinic.
  •  
4.
  •  
5.
  • Brohlin, Maria, 1966-, et al. (author)
  • Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells
  • 2017
  • In: Cytotherapy. - : ELSEVIER SCI LTD. - 1465-3249 .- 1477-2566. ; 19:5, s. 629-639
  • Journal article (peer-reviewed)abstract
    • Background. The growth properties and neurotrophic and angiogenic effects of human mesenchymal stromal cells (MSCs) cultured in a defined xeno-free, serum-free medium (MesenCult-XF) were investigated. Methods. Human MSCs from adipose tissue (ASCs) and bone marrow (BMSCs) were cultured in Minimum Essential Medium-alpha (alpha-MEM) containing fetal calf serum or in MesenCult-XF. Proliferation was measured over 10 passages and the colony-forming unit (CFU) assay and expression of cluster of differentiation (CD) surface markers were determined. Neurite outgrowth and angiogenic activity of the MSCs were determined. Results. At early passage, both ASCs and BMSCs showed better proliferation in MesenCult-XF compared with standard a-MEM containing serum. However, CFUs were significantly lower in MesenCult-XF. ASCs cultured in MesenCult-XF continued to expand at faster rates than cells grown in serum. BMSCs showed morphological changes at late passage in MesenCult-XF and stained positive for senescence beta-galactosidase activity. Expression levels of CD73 and CD90 were similar in both cell types under the various culture conditions but CD105 was significantly reduced at passage 10 in MesenCult-XF. In vitro stimulation of the cells enhanced the expression of brain derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and angiopoietin-1. Stimulated ASCs grown in MesenCult-XF evoked the longest neurite outgrowth in a neuron co-culture model. Stimulated BMSCs grown in MesenCult-XF produced the most extensive network of capillary-like tube structures in an in vitro angiogenesis assay. Conclusions. ASCs and BMSCs exhibit high levels of neurotrophic and angiogenic activity when grown in the defined serum free medium indicating their suitability for treatment of various neurological conditions. However, long-term expansion in MesenCult-XF might be restricted to ASCs.
  •  
6.
  •  
7.
  •  
8.
  • Kaartinen, Tanja, et al. (author)
  • Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion
  • 2017
  • In: Cytotherapy. - : ELSEVIER SCI LTD. - 1465-3249 .- 1477-2566. ; 19:6, s. 689-702
  • Journal article (peer-reviewed)abstract
    • Background. Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype.Methods. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed.Results. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T-SCM, CD95(+)CD45RO(-)CD45RA(+)CD27(+)) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CART cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CART cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10 fold cell expansion and the cells were functionally potent.Discussion. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost:effective T-cell manufacturing.
  •  
9.
  • Le Blanc, K, et al. (author)
  • MSCs-cells with many sides
  • 2018
  • In: Cytotherapy. - : Elsevier BV. - 1477-2566 .- 1465-3249. ; 20:3, s. 273-278
  • Journal article (peer-reviewed)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view