SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1522 1210 OR L773:0031 9333 srt2:(2020-2024)"

Search: L773:1522 1210 OR L773:0031 9333 > (2020-2024)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aalkjær, Christian, et al. (author)
  • Sympathetic and Sensory-Motor Nerves in Peripheral Small Arteries.
  • 2021
  • In: Physiological reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 101:2, s. 495-544
  • Research review (peer-reviewed)abstract
    • Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
  •  
2.
  • Grillner, S, et al. (author)
  • Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion
  • 2020
  • In: Physiological reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 100:1, s. 271-320
  • Journal article (peer-reviewed)abstract
    • The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
  •  
3.
  • Hadamitzky, M, et al. (author)
  • Pavlovian Conditioning of Immunological and Neuroendocrine Functions
  • 2020
  • In: Physiological reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 100:1, s. 357-405
  • Journal article (peer-reviewed)abstract
    • The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
  •  
4.
  • Herre, Melanie, et al. (author)
  • Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases
  • 2023
  • In: Physiological Reviews. - : American Physical Society. - 0031-9333 .- 1522-1210. ; 103:1, s. 277-312
  • Research review (peer-reviewed)abstract
    • Neutrophil extracellular trap (NET) formation, first described in 2004 as a previously unknown strategy of neutrophils to fight microbes, has attracted an increasing interest in the research community. NETs are formed when neutrophils externalize their decondensed chromatin together with content from their azurophilic granules. In addition to their role in defense against microbes, NETs have been implicated as mediators of pathology in sterile inflammation, such as cancer and autoimmunity, and their potential as therapeutic targets is actively explored. However, targeting of NETs is challenging since the beneficial effects of their removal need to be balanced against the potential harmful loss of their function in microbial defense. Moreover, depending on the stimuli or species, NETs can be formed via distinct mechanisms and are not always made up of the same components, making direct comparisons between various studies challenging. This review focuses on the role of NETs in cancer-associated pathology, such as thrombosis, organ dysfunction, and metastasis. Different strategies to target NETs, by either preventing their formation or degrading existing ones, are also discussed.
  •  
5.
  • Keller, TCS, et al. (author)
  • The role of globins in cardiovascular physiology
  • 2022
  • In: Physiological reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 102:2, s. 859-892
  • Journal article (peer-reviewed)abstract
    • Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view