SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1756 591X srt2:(2020-2024)"

Search: L773:1756 591X > (2020-2024)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fischer, F., et al. (author)
  • Expansion of nickel binding- and histidine-rich proteins during gastric adaptation of Helicobacter species
  • 2022
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 14:9
  • Journal article (peer-reviewed)abstract
    • Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking, and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics, and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OGs) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 +/- 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 +/- 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme oxygenases. The expansion of histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.
  •  
2.
  • Schulze, Yves, et al. (author)
  • Chemical-genomic profiling identifies genes that protect yeast from aluminium, gallium, and indium toxicity
  • 2023
  • In: Metallomics. - : Oxford University Press. - 1756-5901 .- 1756-591X. ; 15:6
  • Journal article (peer-reviewed)abstract
    • Aluminium, gallium, and indium are group 13 metals with similar chemical and physical properties. While aluminium is one of the most abundant elements in the Earth's crust, gallium and indium are present only in trace amounts. However, the increased use of the latter metals in novel technologies may result in increased human and environmental exposure. There is mounting evidence that these metals are toxic, but the underlying mechanisms remain poorly understood. Likewise, little is known about how cells protect themselves from these metals. Aluminium, gallium, and indium are relatively insoluble at neutral pH, and here we show that they precipitate in yeast culture medium at acidic pH as metal-phosphate species. Despite this, the dissolved metal concentrations are sufficient to induce toxicity in the yeast Saccharomyces cerevisiae. By chemical-genomic profiling of the S. cerevisiae gene deletion collection, we identified genes that maintain growth in the presence of the three metals. We found both shared and metal-specific genes that confer resistance. The shared gene products included functions related to calcium metabolism and Ire1/Hac1-mediated protection. Metal-specific gene products included functions in vesicle-mediated transport and autophagy for aluminium, protein folding and phospholipid metabolism for gallium, and chorismate metabolic processes for indium. Many of the identified yeast genes have human orthologues involved in disease processes. Thus, similar protective mechanisms may act in yeast and humans. The protective functions identified in this study provide a basis for further investigations into toxicity and resistance mechanisms in yeast, plants, and humans. © 2023 The Author(s). 
  •  
3.
  • Selley, Liza, et al. (author)
  • Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages
  • 2020
  • In: Metallomics. - : Royal Society of Chemistry. - 1756-5901 .- 1756-591X. ; 12:3, s. 371-386
  • Journal article (peer-reviewed)abstract
    • Studies have emphasised the importance of combustion-derived particles in eliciting adverse health effects, especially those produced by diesel vehicles. In contrast, few investigations have explored the potential toxicity of particles derived from tyre and brake wear, despite their significant contributions to total roadside particulate mass. The objective of this study was to compare the relative toxicity of compositionally distinct brake abrasion dust (BAD) and diesel exhaust particles (DEP) in a cellular model that is relevant to human airways. Although BAD contained considerably more metals/metalloids than DEP (as determined by inductively coupled plasma mass spectrometry) similar toxicological profiles were observed in U937 monocyte-derived macrophages following 24 h exposures to 4–25 μg ml−1 doses of either particle type. Responses to the particles were characterised by dose-dependent decreases in mitochondrial depolarisation (p ≤ 0.001), increased secretion of IL-8, IL-10 and TNF-α (p ≤ 0.05 to p ≤ 0.001) and decreased phagocytosis of S. aureus (p ≤ 0.001). This phagocytic deficit recovered, and the inflammatory response resolved when challenged cells were incubated for a further 24 h in particle-free media. These responses were abrogated by metal chelation using desferroxamine. At minimally cytotoxic doses both DEP and BAD perturbed bacterial clearance and promoted inflammatory responses in U937 cells with similar potency. These data emphasise the requirement to consider contributions of abrasion particles to traffic-related clinical health effects.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view