SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1758 4469 OR L773:0829 318X srt2:(2005-2009)"

Search: L773:1758 4469 OR L773:0829 318X > (2005-2009)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adomas, Aleksandra, et al. (author)
  • Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus
  • 2008
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 28:6, s. 885-897
  • Journal article (peer-reviewed)abstract
    • To investigate functional differences in the recognition and response mechanisms of conifer roots to fungi with different trophic strategies, Pinus sylvestris L. was challenged with a saprotrophic fungus Trichoderma aureoviride Rifai. The results were compared with separate studies investigating pine interactions with a pathogen, Heterobasidion annosum (Fr.) Bref. sensu stricto and an ectomycorrhizal symbiont, Laccaria bicolor Maire (Orton). Global changes in the expression of 2109 conifer genes were assayed 1, 5 and 15 days after inoculation. Gene expression data from a cDNA microarray were analyzed by the 2-interconnected mixed linear model statistical approach. The total number of genes differentially expressed compared with the uninfected control was similar after challenge with the pathogen and the ectomycorrhizal symbiont, but the number of differentially expressed genes increased over time, for H. annosum, and decreased for L. bicolor. Inoculation of pine roots with T aureoviride resulted overall in a much lower number of genes with changed transcript levels compared with inoculation with H. annosum or L. bicolor. Functional classification of the differentially expressed genes revealed that the ectomycorrhizal fungus triggered transient induction of defence-related genes. The response and induction of defence against the pathogen was delayed and the magnitude increased over time. Thus, there were specific transcriptional responses depending on whether the conifer roots were challenged with mutualistic, saprotrophic or pathogenic fungi. This suggests that pine trees are able to recognize diverse fungal species and specifically distinguish whether they are pathogenic, neutral or beneficial microbial agents.
  •  
2.
  • Børja, Isabella, et al. (author)
  • Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway
  • 2008
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 28:5, s. 773-784
  • Journal article (peer-reviewed)abstract
    • We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1–2 and 2–5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m–2, SLR from 13.4 to 19.8 m g–1, RLD from 980 to 11,650 m m–3 and RSA from 2.4 to 35.4 m2 m–3. Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0–5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
  •  
3.
  • Duursma, R. A., et al. (author)
  • Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis
  • 2009
  • In: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 29:5, s. 621-639
  • Journal article (peer-reviewed)abstract
    • Gross primary production (GPP) is the primary source of all carbon fluxes in the ecosystem. Understanding, variation in this flux is vital to understanding variation in the carbon sink of forest ecosystems, and this would serve as input to forest production models. Using GPP derived from eddy-covariance (EC) Measurements, it is now possible to determine the most important factor to scale GPP across sites. We use long-term EC measurements for six coniferous forest stands in Europe, for a total of 25 site-years, located oil a gradient between Southern France and northern Finland. Eddy-derived GPP varied threefold across the six sites, peak ecosystem leaf area index (LAI) (all-sided) varied from 4 to 22 m(2) m(-2) and mean annual temperature varied from - 1 to 13 degrees C. A process-based model operating at a half-hourly time-step was parameterized with available information for each site, and explained 71-96% in variation between daily totals of GPP within site-years and 62% of annual total GPP across site-years. Using the parameterized model, we performed two simulation experiments: weather datasets were interchanged between sites, so that the model was used to predict GPP at some site using data from either a different year or a different site. The resulting bias in GPP prediction was related to several aggregated weather variables and was found to be closely related to the change in the effective temperature sum or mean annual temperature. High R(2)s resulted even when using weather datasets from unrelated sites, providing a cautionary note on the interpretation of R-2 ill model comparisons. A second experiment interchanged stand-structure information between sites. and the resulting bias was strongly related to the difference in LAI, or the difference in integrated absorbed light. Across the six sites. variation in mean annual temperature had more effect on simulated GPP than the variation in LAI. but both were important determinants of GPP. A sensitivity analysis of leaf physiology parameters showed that the quantum yield was the most influential parameter on annual GPP, followed by a parameter controlling the seasonality of photosynthesis and photosynthetic capacity. Overall, the results are promising for the development of a parsimonious model of GPP.
  •  
4.
  • Hakman, Inger, et al. (author)
  • The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development
  • 2009
  • In: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 29:4, s. 483-496
  • Journal article (peer-reviewed)abstract
    • Auxin and polar auxin transport have been implicated in controlling embryo patterning and development in angiosperms but less is known from the gymnosperms. The aims of this study were to determine at what stages of conifer embryo development auxin and polar auxin transport are the most important for normal development and to analyze the changes in embryos after treatment with the polar auxin inhibitor N-1-naphthylphthalamic acid (NPA). For these studies, somatic embryos of Norway spruce (Picea abies L. Karst) were used. Growth on medium containing NPA leads to the formation of embryos with poor shoot apical meristem (SAM) and fused cotyledons, and to a pin-formed phenotype of the regenerated plantlets. The effect of NPA on embryo morphology was most severe if embryos were transferred to NPA-containing medium immediately before cotyledon initiation and SAM specification. Indole-3-acetic acid (IAA) was identified by immunolocalization in developing embryos. The highest staining intensity was seen in early staged embryos and then decreased as the embryos matured. No clear IAA-maxima was seen, although the apical parts of embryos, particularly the protoderm, and the suspensor cells appear to accumulate more IAA, as reflected by the staining pattern. The NPA treatment also caused expanded procambium and a broader root apical meristem in embryos, and a significant increase in the expression of a PIN1-like gene. Taken together, our results show that, for proper cotyledon initiation, correct auxin transport is needed only during a short period at the transition stage of embryo development, probably involving PIN efflux proteins and that a common mechanism is behind proper cotyledon formation within the species of angiosperms and conifers, despite their cotyledon number which normally differs.
  •  
5.
  • Hall, Marianne, 1976, et al. (author)
  • Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers
  • 2009
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 29:4
  • Journal article (peer-reviewed)abstract
    • Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1–3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20–30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.
  •  
6.
  • Joosen, R.V.L., et al. (author)
  • Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays
  • 2006
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 26:10, s. 1297-1313
  • Journal article (peer-reviewed)abstract
    • Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about 1500 expressed sequence tags (ESTs) from buds of cold-treated Scots pine seedlings. In a climate room providing long daily photoperiods and high temperatures, seedlings did not develop freezing tolerance, whereas seedlings in a climate room set to provide declining temperatures and day lengths developed moderate freezing tolerance. Control seedlings grown outside under field conditions developed full freezing tolerance. Differences in physiological behavior of the different seedling groups, combined with molecular analysis, allowed identification of a large group of genes, expression of which changed during the development of freezing tolerance. Transcript abundance of several of these genes was highly correlated with freezing tolerance in seedlings differing in provenance, field location or age, making them excellent candidate marker genes for molecular tests for freezing tolerance.
  •  
7.
  • Uddling, Johan, 1972, et al. (author)
  • Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone
  • 2009
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 29:11, s. 1367-1380
  • Journal article (peer-reviewed)abstract
    • Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O-3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+ 45%) and O-3 (+ 35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O-3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O-3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf C-13 discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O-3 than in trees growing in control plots, causing a CO2 x O-3 interaction that was statistically significant (P <= 0.10) for sap flux-and (for birch) C-13-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O-3. Investigation of a short-term gap in CO2 enrichment demonstrated a + 10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O-3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.
  •  
8.
  • Weih, Martin (author)
  • Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy
  • 2009
  • In: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 29, s. 1479-1490
  • Journal article (peer-reviewed)abstract
    • Six commercial willow (Salix spp.) varieties were examined to investigate the effects of genotype and environment on spring and autumn phenology and the relationships between phenology, shoot growth and leaf nitrogen (N) retranslocation. The willows were field-grown under different irrigation and fertilization in central Sweden. Two independent data sets of bud-burst, leaf unfolding duration, growth cessation and the timing of leaf abscission were assessed, and the biomass and leaf N data from the end of the first cutting cycle were used. Specific hypotheses were that (1) spring phenology has a greater effect on the shoot biomass production than autumn phenology; (2) later bud-burst is associated with more rapid leaf unfolding; (3) the timing of leaf abscission has a greater effect on the shoot biomass production than height growth cessation; and (4) later leaf fall is associated with poorer leaf N retranslocation. Bud-burst date varied by 19 and 39 days in the 2 years and leaf unfolding duration varied by 13 and 38 days. Growth cessation varied by 2.5 weeks and completion of leaf abscission (> 90% of leaves shed) by more than 3 weeks between the genotypes and treatments. Bud-burst date was inversely correlated with leaf unfolding duration (R(2)=0.96). Significant effects of the duration of leafy period (bud-burst to leaf abscission) and bud-burst date on shoot growth were found. Delayed growth cessation and leaf abscission were generally associated with a greater biomass production, but especially the relationship between growth cessation and biomass was weak. The results show that the timing of bud-burst and leaf abscission is more important for willow biomass production than growth cessation. Delayed leaf abscission has a negative effect on leaf N retranslocation and increases the N losses. The results have implications for the breeding of perennial energy crops.
  •  
9.
  • Betson, N. R., et al. (author)
  • No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest
  • 2007
  • In: Tree Physiology. - 0829-318X. ; 27:5, s. 749-756
  • Journal article (peer-reviewed)abstract
    • Characterization of soil respiration rates and delta(13C) values of soil-respired CO2 are often based on measurements at a particular time of day. A study by Gower et al. (2001) in a boreal forest demonstrated diurnal patterns of soil CO2 flux using transparent measurement chambers that included the understory vegetation. It is unclear whether these diurnal patterns were solely the result of photosynthetic CO2 uptake during the day by the understory or whether there were underlying trends in soil respiration, perhaps driven by plant root allocation, as recently demonstrated in Mediterranean oak savannah. We undertook intensive sampling campaigns in a boreal Picea abies L. Karst. forest to investigate whether diurnal variations in soil respiration rate and stable carbon isotope ratio (delta C-13) exist in this ecosystem when no understory vegetation is present in the measurement chamber. Soil respiration rates and delta C-13 were measured on plots in which trees were either girdled (to terminate the fraction of soil respiration directly dependent on recent photosynthate from the trees), or not girdled, every 4 h over two 48-hour cycles during the growth season of 2004. Shoot photosynthesis and environmental parameters were measured concurrently. No diurnal patterns in soil respiration rates and delta C-13 were observed in either treatment, despite substantial variations in climatic conditions and shoot photosynthetic rates in non-girdled trees. Consequently, assessment of daily soil respiration rates and delta C-13 in boreal forest systems by single, instantaneous daily measurements does not appear to be confounded by substantial diurnal variation.
  •  
10.
  • Slaney, M., et al. (author)
  • Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce
  • 2007
  • In: Tree Physiology. - 0829-318X. ; 27:2, s. 301-312
  • Journal article (peer-reviewed)abstract
    • Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 mu mol mol(-1) [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees >= 0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view