SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1873 3344 OR L773:1873 3344 OR L773:0162 0134 srt2:(2000-2004)"

Search: L773:1873 3344 OR L773:1873 3344 OR L773:0162 0134 > (2000-2004)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Huang, Ping, et al. (author)
  • Photo-induced oxidation of a dinuclear Mn-2(II,II) complex to the Mn-2(III,IV) state by inter- and intramolecular electron transfer to Ru-III tris-bipyridine
  • 2002
  • In: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 91:1, s. 159-172
  • Journal article (peer-reviewed)abstract
    • To model the structural and functional parts of the water oxidizing complex in Photosystem 11, a dimeric manganese(II,11) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru-II(bpy)3) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru-II(bpy), in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru-III(bpy), from the Mn-2(II,II) dimer, which then attained the Mn-2(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn-2(III,IV) state. Our data indicate that oxidation from the Mn-2(II,II) state proceeds stepwise via intermediate formation of Mn-2(II,III) and Mn-2(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn-2(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn-2(III,IV), this suggests that water is essential for the formation of the Mn-2(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem 11, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.
  •  
2.
  •  
3.
  • Sun, Licheng C., et al. (author)
  • Towards an artificial model for Photosystem II : a manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative
  • 2000
  • In: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 78:1, s. 15-22
  • Journal article (peer-reviewed)abstract
    • In order to model the individual electron transfer steps from the manganese cluster to the photooxidized sensitizer P-680(+) in Photosystem II (PS II) in green plants, the supramolecular complex 4 has been synthesized. In this complex, a ruthenium(II) tris-bipyridine type photosensitizer has been linked to a manganese(II) dimer via a substituted L-tyrosine, which bridges the manganese ions. The trinuclear complex 4 was characterized by electron paramagnetic resonance (EPR) and electrospray ionization mass spectrometry (ESI-MS). The excited state lifetime of the ruthenium tris-bipyridine moiety in 4 was found to be about 110 ns in acetonitrile, Using flash photolysis in the presence of an electron acceptor (methylviologen), it was demonstrated that in the supramolecular complex 4 an electron was transferred from the excited state of the ruthenium tris-bipyridine moiety to methylviologen, forming a methylviologen radical and a ruthenium(III) tris-bipyridine moiety. Next, the Ru(III) species retrieved the electron from the manganese(II/II) dimer in an intramolecular electron transfer reaction with a rate constant k(ET)>1.0X10(7) s(-1), generating a manganese(II/III) oxidation state and regenerating the ruthenium(II) photosensitizer. This is the first example of intramolecular electron transfer in a supramolecular complex, in which a manganese dimer is covalently linked to a photosensitizer via a tyrosine unit, in a process which mimics the electron transfer on the donor side of PS II.
  •  
4.
  • Olofsson, J., et al. (author)
  • Picosecond Kerr-gated time-resolved resonance Raman spectroscopy of the Ru(phen)(2)dppz (2+) interaction with DNA
  • 2002
  • In: Journal of Inorganic Biochemistry. - 0162-0134 .- 1873-3344. ; 91:1, s. 286-297
  • Journal article (peer-reviewed)abstract
    • To investigate the basis of the 'light-switch' effect, the solvent dependence of the Kerr-gated picosecond-time resolved resonance Raman (TR3) spectra of [Ru(bpy),dppz](2+), [Ru(phen)(2)dppz](2+), and the modified complex [Ru(phen)(2)cpdppzOMe](2+) and a dimer [mu-C4(cpdppz)(2)-(phen)(4)Ru-2](4+) were studied. The investigation focussed on comparing the behaviour of [Ru(phen)(2)dppz](2+) in acetonitrile, ethanol, H2O, D2O, and DNA. The data are consistent with a model wherein excitation induces metal-to-ligand charge transfer (MLCT) to any of the ligands (termed the 'precursor' state) which, by interligand electron transfer (ILET), produces an excited state localised on the dppz ligand, MLCT1. In water this state relaxes with a characteristic time of similar to6 ps to a non-emissive state (MLCT2). The TR3 spectra in water, acetonitrile and DNA are all distinctly different. However. the early (4 ps) water spectrum resembles the spectrum in DNA. This interesting observation suggests that the DNA-bound excited state of the complex can be thought of as a model for the initial, poorly solvated state in water.
  •  
5.
  • Brindell, M, et al. (author)
  • Mechanistic information on the reaction of cis- and trans-[RuCl2(DMSO)(4)] with d(T(2)GGT(2)) derived from MALDI-TOF and HPLC studies
  • 2004
  • In: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 98:8, s. 1367-1377
  • Journal article (peer-reviewed)abstract
    • Reactions of trans and cis isomers of the Ru-II complex [RuCl2(DMSO)(4)] with single-stranded hexanucleotide d(T(2)GGT(2)) were studied in aqueous solutions in the absence and presence of excess chloride by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS). Despite the different reactive species formed from the two isomers in aqueous solution, similar reaction products are obtained in their interaction with d(T(2)GGT(2)). Both [RuCl2(DMSO)(4)] isomers bind to the oligonucleotide in the bidentate mode to form thermodynamically stable bis-guanosine adducts, Ru(G-N7)(2), Significant differences were observed in the reaction rates, however the reaction with trans[RuCl2(DMSO)(4)] is ca. 5-10 times faster in comparison to that observed for the cis analogue. This difference is interpreted in terms of different rate-limiting steps for the trans and cis complexes, respectively. It is suggested that the rate of the reaction with the trans isomer is controlled by dissociation of a Cl- ligand from the initially formed trans, cis, cis-[RuCl2(DMSO)(2)(H2O)(2)]. In the contrast, release of a dimethyl sulfoxide molecule from the reactive species cis,fac-[RuCl2(DMSO)(3)(H2O)] is likely to be rate limiting for the cis analogue. Significant influence of electrostatic interactions on the reaction rate was observed for the trans isomer. Mechanistic interpretation of the observed reactivity trends based on data obtained from UV-Vis spectroscopy, HPLC and MALDI-TOF MS studies is presented and discussed within the paper.
  •  
6.
  • Huang, Ping, et al. (author)
  • Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis
  • 2004
  • In: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 98:5, s. 733-745
  • Journal article (peer-reviewed)abstract
    • Two dinuclear manganese complexes, [Mn2BPMP(mu-OAc)(2)] . ClO4 (1, where BPMP is the anion of 2,6-bis {[N,N-di(2-pyridinemethyl)amino]methyl}-4-methylphenol) and [Mn2L(mu-OAc)(2)] . ClO4 (2, where L is the trianion of 2,6-bis{[N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2-pyridinemethyl)amino]methyl}-4-methylphenol), undergo several oxidations by laser flash photolysis, using ruthenium(II)-tris-bipyridine (tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate) as photo-sensitizer and penta-amminechlorocobalt(III) chloride as external electron acceptor. In both complexes stepwise electron transfer was observed. In 1, four Mn-valence states from the initial Mn-2(II,II) to the Mn-2(III,IV) state are available. In 2, three oxidation steps are possible from the initial Mn-2(III,III) state. The last step is accomplished in the Mn-2(IV,IV) state, which results in a phenolate radical. For the first time we provide firm spectral evidence for formation of the first intermediate state, Mn-2(II,III) in 1 during the stepwise light-induced oxidation. Observation of Mn-2(II,III) is dependent on conditions that sustain the mu-acetato bridges in the complex, i.e., by forming Mn-2(II,III) in dry acetonitrile, or by addition of high concentrations of acetate in aqueous solutions. We maintain that the presence of water is necessary for the transition to higher oxidation states, e.g., Mn-2(III,III) and Mn-2(III,IV) in 1, due to a bridging ligand exchange reaction which takes place in the Mn-2(II,III) state in water solution. Water is also found to be necessary for reaching the Mn-2(IV,IV) state in 2, which explains why this state was not reached by electrolysis in our earlier work (Eur. J. Inorg. Chem (2002) 2965). In 2, the extra coordinating oxygen atoms facilitate the stabilization of higher Mn valence states than in 1, resulting in formation of a stable Mn-2(IV,IV) without disintegration of 2. In addition, further oxidation of 2, led to the formation of a phenolate radical (g = 2.0046) due to ligand oxidation. Its spectral width (8 mT) and very fast relaxation at 15 K indicates that this radical is magnetically coupled to the Mn-2(IV,IV) center.
  •  
7.
  •  
8.
  • Nilsson, Kristina, et al. (author)
  • Protonation status of metal-bound ligands can be determined by quantum refinement
  • 2004
  • In: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 98:9, s. 1539-1546
  • Journal article (peer-reviewed)abstract
    • The protonation status of key residues and bound ligands are often important for the function of a protein. Unfortunately, protons are not discerned in normal protein crystal structures, so their positions have to be determined by more indirect methods. We show that the recently developed quantum refinement method can be used to determine the position of protons in crystal structures. By replacing the molecular-mechanics potential, normally used in crystallographic refinement, by more accurate quantum chemical calculations, we get information about the ideal structure of a certain protonation state. By comparing the refined structures of different protonation states, the one that fits the crystallographic raw data best can be decided using four criteria: the R factors, electron density maps, strain energy, and divergence from the unrestrained quantum chemical structure. We test this method on alcohol dehydrogenase, for which the pK(a) of the zinc-bound solvent molecule is experimentally known. We show that we can predict the correct protonation state for both a deprotonated alcohol and a neutral water molecule. (C) 2004 Elsevier Inc. All rights reserved.
  •  
9.
  • Shen, Yong, et al. (author)
  • The structure of sitting-atop complexes of metalloporphyrins studied by theoretical methods
  • 2004
  • In: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 98:5, s. 878-895
  • Journal article (peer-reviewed)abstract
    • The metallation of tetrapyrroles is believed to proceed via a sitting-atop (SAT) complex, in which some of the pyrrole nitrogen atoms are still protonated and the metal ion resides above the ring plane. No crystal structure of such a complex has been presented, but NMR and extended X-ray absorption fine structure (EXAFS) data has been reported for Cu2+ in acetonitrile. We have used density functional calculations to obtain reasonable models for SAT complexes of porphyrins with Mg2+, Fe2+, and Cu2+. The results show that there are many possible SAT complexes with 1-5 solvent molecules, one or two metal ions, and cis or trans protonation of the porphyrin ring. Many of these have similar energies and their relative stabilities vary with the metal ion. A complex with two cis pyrrolenine nitrogens atoms and 2-4 solvent molecules coordinated to Cu2+ fits the NMR and EXAFS data best. However, we cannot fully exclude the possibility that what is observed is rather a mixture of a doubly protonated porphyrin and the copper porphyrin. Mg2+ has a lower affinity for porphyrin and stronger affinity for water, so a complex with five water molecules and only one bond to porphyrin seems to be most stable. For Fe2+, a cis structure with two first-sphere water molecules and four interactions to the porphyrin seems to be most likely. (C) 2004 Elsevier Inc. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view