SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2049 2618 srt2:(2018)"

Search: L773:2049 2618 > (2018)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alneberg, Johannes, et al. (author)
  • Genomes from uncultivated prokaryotes : a comparison of metagenome-assembled and single-amplified genomes
  • 2018
  • In: Microbiome. - : BioMed Central. - 2049-2618. ; 6
  • Journal article (peer-reviewed)abstract
    • Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms. Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (average 99.51% sequence identity; range 98.77-99.84%) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs. Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.
  •  
2.
  • Bengtsson-Palme, Johan, 1985 (author)
  • The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants-but not always
  • 2018
  • In: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 6
  • Journal article (peer-reviewed)abstract
    • Background: Antibiotic resistance is considered one of the most urgent threats to modern healthcare, and the role of the environment in resistance development is increasingly recognized. It is often assumed that the abundance and diversity of known resistance genes are representative also for the non-characterized fraction of the resistome in a given environment, but this assumption has not been verified. In this study, this hypothesis is tested, using the resistance gene profiles of 1109 metagenomes from various environments. Results: This study shows that the diversity and abundance of known antibiotic resistance genes can generally predict the diversity and abundance of undescribed resistance genes. However, the extent of this predictability is dependent on the type of environment investigated. Furthermore, it is shown that carefully selected small sets of resistance genes can describe total resistance gene diversity remarkably well. Conclusions: The results of this study suggest that knowledge gained from large-scale quantifications of known resistance genes can be utilized as a proxy for unknown resistance factors. This is important for current and proposed monitoring efforts for environmental antibiotic resistance and has implications for the design of risk ranking strategies and the choices of measures and methods for describing resistance gene abundance and diversity in the environment.
  •  
3.
  • Broberg, Martin (author)
  • Integrated multi-omic analysis of host-microbiota interactions in acute oak decline
  • 2018
  • In: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 6
  • Journal article (peer-reviewed)abstract
    • Background: Britain's native oak species are currently under threat from acute oak decline (AOD), a decline-disease where stem bleeds overlying necrotic lesions in the inner bark and larval galleries of the bark-boring beetle, Agrilus biguttatus, represent the primary symptoms. It is known that complex interactions between the plant host and its microbiome, i.e. the holobiont, significantly influence the health status of the plant. In AOD, necrotic lesions are caused by a microbiome shift to a pathobiome consisting predominantly of Brenneria goodwinii, Gibbsiella quercinecans, Rahnella victoriana and potentially other bacteria. However, the specific mechanistic processes of the microbiota causing tissue necrosis, and the host response, have not been established and represent a barrier to understanding and managing this decline.Results: We profiled the metagenome, metatranscriptome and metaproteome of inner bark tissue from AOD symptomatic and non-symptomatic trees to characterise microbiota-host interactions. Active bacterial virulence factors such as plant cell wall-degrading enzymes, reactive oxygen species defence and flagella in AOD lesions, along with host defence responses including reactive oxygen species, cell wall modification and defence regulators were identified. B. goodwinii dominated the lesion microbiome, with significant expression of virulence factors such as the phytopathogen effector avrE. A smaller proportion of microbiome activity was attributed to G. quercinecans and R. victoriana. In addition, we describe for the first time the potential role of two previously uncharacterised Gram-positive bacteria predicted from metagenomic binning and identified as active in the AOD lesion metatranscriptome and metaproteome, implicating them in lesion formation.Conclusions: This multi-omic study provides novel functional insights into microbiota-host interactions in AOD, a complex arboreal decline disease where polymicrobial-host interactions result in lesion formation on tree stems. We present the first descriptions of holobiont function in oak health and disease, specifically, the relative lesion activity of B. goodwinii, G. quercinecans, Rahnella victoriana and other bacteria. Thus, the research presented here provides evidence of some of the mechanisms used by members of the lesion microbiome and a template for future multi-omic research into holobiont characterisation, plant polymicrobial diseases and pathogen defence in trees.
  •  
4.
  •  
5.
  • Zha, Yinghua, et al. (author)
  • Effects of predation stress and food ration on perch gut microbiota
  • 2018
  • In: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 6
  • Journal article (peer-reviewed)abstract
    • Background: Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. Results: We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Conclusions: Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context. RAHAMS MV, 1989, ECOLOGY, V70, P999
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view