SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2050 7488 srt2:(2015-2019)"

Search: L773:2050 7488 > (2015-2019)

  • Result 1-10 of 198
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abrashev, Miroslav V., et al. (author)
  • Origin of the heat-induced improvement of catalytic activity and stability of MnOx electrocatalysts for water oxidation
  • 2019
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 7:28, s. 17022-17036
  • Journal article (peer-reviewed)abstract
    • Catalysis of the oxygen evolution reaction (OER) by earth-abundant materials in the near-neutral pH regime is of great interest as it is the key reaction for non-fossil fuel production. To address the pertinent stability problems and insufficiently understood structure-activity relations, we investigate the influence of moderate annealing (100-300 degrees C for 20 min) for two types of electrodeposited Mn oxide films with contrasting properties. Upon annealing, the originally inactive and structurally well-ordered Oxide 1 of birnessite type became as OER active as the non-heated Oxide 2, which has a highly disordered atomic structure. Oxide 2 also improved its activity upon heating, but more important is the stability improvement: the operation time increased by about two orders of magnitude (in 0.1 M KPi at pH 7). Aiming at atomistic understanding, electrochemical methods including quantitative analysis of impedance spectra, X-ray spectroscopy (XANES and EXAFS), and adapted optical spectroscopies (infrared, UV-vis and Raman) identified structure-reactivity relations. Oxide structures featuring both di-mu-oxo bridged Mn ions and (close to) linear mono-mu-oxo Mn3+-O-Mn4+ connectivity seem to be a prerequisite for OER activity. The latter motif likely stabilizes Mn3+ ions at higher potentials and promotes electron/hole hopping, a feature related to electrical conductivity and reflected in the strongly accelerated rates of Mn oxidation and O-2 formation. Poor charge mobility, which may result from a low level of Mn3+ ions at high potentials, likely promotes inactivation after prolonged operation. Oxide structures related to the perovskite-like zeta-Mn2O3 were formed after the heating of Oxide 2 and could favour stabilization of Mn ions in oxidation states lower than +4. This rare phase was previously found only at high pressure (20 GPa) and temperature (1200 degrees C) and this is the first report where it was stable under ambient conditions.
  •  
2.
  • Ajjan, Fátima, et al. (author)
  • High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
  • 2016
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 4:5, s. 1838-1847
  • Journal article (peer-reviewed)abstract
    • Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.
  •  
3.
  • Ajjan, Fátima, et al. (author)
  • Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material
  • 2015
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 3:24, s. 12927-12937
  • Journal article (peer-reviewed)abstract
    • We report spectroelectrochemical studies to investigate the charge storage mechanism of composite polypyrrole/lignin electrodes. Renewable bioorganic electrode materials were produced by electropolymerization of pyrrole in the presence of a water-soluble lignin derivative acting as a dopant. The resulting composite exhibited enhanced charge storage abilities due to a lignin-based faradaic process, which was expressed after repeated electrochemical redox of the material. The in situ FTIR spectroelectrochemistry results show the formation of quinone groups, and reversible oxidation-reduction of these groups during charge-discharge experiments in the electrode materials. The most significant IR bands include carbonyl absorption near 1705 cm(-1), which is attributed to the creation of quinone moieties during oxidation, and absorption at 1045 cm(-1) which is due to hydroquinone moieties.
  •  
4.
  • Alkadir Abdulahi, Birhan, 1985, et al. (author)
  • Structural engineering of pyrrolo[3,4-: F] benzotriazole-5,7(2 H,6 H)-dione-based polymers for non-fullerene organic solar cells with an efficiency over 12%
  • 2019
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:33, s. 19522-19530
  • Journal article (peer-reviewed)abstract
    • In this work, we have synthesized two wide band gap donor polymers based on benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrrolo[3,4-f]benzotriazole-5,7(2H,6H)-dione (TzBI), namely, PBDT-TzBI and PBDT-F-TzBI and studied their photovoltaic properties by blending them with ITIC as an acceptor. Polymer solar cell devices made from PBDT-TzBI:ITIC and PBDT-F-TzBI:ITIC exhibited power conversion efficiencies (PCEs) of 9.22% and 11.02% and while annealing at 160 °C, improved the device performances to 10.24% and 11.98%, respectively. Upon solvent annealing with diphenyl ether (DPE) (0.5%) and chlorobenzene (CB), the PCE of the PBDT-F-TzBI-based device increased to 12.12%. The introduction of the fluorinated benzodithiophene (BDT-F) moiety on the backbone of PBDT-F-TzBI improved the open circuit voltage, short circuit current and fill factor simultaneously. The high PCEs of the PBDT-F-TzBI:ITIC-based devices were supported by comparison and analysis of the optical and electronic properties, the charge carrier mobilities, exciton dissociation probabilities, and charge recombination behaviors of the devices.
  •  
5.
  • Araujo, Rafael B., et al. (author)
  • Designing strategies to tune reduction potential of organic molecules for sustainable high capacity batteries application
  • 2017
  • In: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 5:9, s. 4430-4454
  • Journal article (peer-reviewed)abstract
    • Organic compounds evolve as a promising alternative to the currently used inorganic materials in rechargeable batteries due to their low-cost, environmentally friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, [small pi] bonds, as well as carboxyl groups on the formal potential, has been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.
  •  
6.
  • Araujo, Rafael B., et al. (author)
  • Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application
  • 2017
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 5:9, s. 4430-4454
  • Journal article (peer-reviewed)abstract
    • Organic compounds evolve as a promising alternative to currently used inorganic materials in rechargeable batteries due to their low-cost, environmental friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of the density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, and pi bonds, as well as carboxyl groups on the formal potential, have been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.
  •  
7.
  • Araujo, Rafael B., et al. (author)
  • Predicting electrochemical properties and ionic diffusion in Na2+2xMn2-x(SO4)(3) : crafting a promising high voltage cathode material
  • 2016
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:2, s. 451-457
  • Journal article (peer-reviewed)abstract
    • Sodium ion batteries have emerged as a good alternative to lithium based systems due to their low cost of production. In this scenario, the search for higher voltage, sodium cathodes results in a new promising alluaudite structure Na2+2xMn2-x(SO4)(3). The structural, electronic and Na diffusion properties along with defects have been reported in this investigation within the framework of density functional theory. A band gap of 3.61 eV has been computed and the average deintercalation potential is determined to be 4.11 V vs. Na/Na+. A low concentration of anti-site defects is predicted due to their high formation energy. The biggest issue for the ionic diffusion in the Na2+2xMn2-x(SO4)(3) crystal structure is revealed to be the effect of Mn vacancies increasing the activation energy of Na+ ions that hop along the [001] equilibrium positions. This effect leads to activation energies of almost the same high values for the ionic hop through the [010] direction characterizing a 2D like ionic diffusion mechanism in this system.
  •  
8.
  • Arvizu, Miguel A, et al. (author)
  • Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment
  • 2019
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 7:6, s. 2908-2918
  • Journal article (peer-reviewed)abstract
    • Electrochromic windows and glass facades are able to impart energy efficiency jointly with indoor comfort and convenience. Long-term durability is essential for practical implementation of this technology and has recently attracted broad interest. Here we show that a simple potentiostatic pretreatment of sputterdeposited thin films of amorphous WO3-the most widely studied electrochromic material-can yield unprecedented durability for charge exchange and optical modulation under harsh electrochemical cycling in a Li-ion-conducting electrolyte and effectively evades harmful trapping of Li. The pretreatment consisted of applying a voltage of 6.0 V vs. Li/Li+ for several hours to a film backed by a transparent conducting In2O3: Sn layer. Associated compositional and structural modifications were probed by several techniques, and improved durability was associated with elemental intermixing at the WO3/ITO and ITO/glass boundaries as well as with carbonaceous solid-electrolyte interfacial layers on the WO3 films. Our work provides important new insights into long-term durability of ion-exchange-based devices.
  •  
9.
  • Banerjee, Amitava, et al. (author)
  • Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)(3)](+)-based hybrid perovskite solar cells
  • 2017
  • In: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:35, s. 18561-18568
  • Journal article (peer-reviewed)abstract
    • Guanidinium lead iodide (GAPbI(3)) has been synthesized experimentally, but stability remains an issue, which can be modulated by the insertion of bromine (Br) into the system. We have performed a systematic theoretical investigation to see how bromination can tune the stability of GAPbI(3). The optical properties were also determined, and we have found formation enthalpy-based stability in the perovskite systems, which are active in the visible and IR region even after bromine insertion and additionally more active in the IR range with the transition from GAPbI(3) to GAPbBr(3). The spin orbit coupling effect is considered throughout the band structure calculations. The ensemble of the primary and secondary gaps in the half and fully brominated hybrid perovskites leads to the phenomenon of a multipeak response in the optical spectra, which can be subsequently attributed as multivalley optical response behaviour. This multivalley optical behaviour enables the brominated guanidinium-based hybrid perovskites to exhibit broad light harvesting abilities, and this can be perceived as an idea for natural multi-junction solar cells.
  •  
10.
  • Banerjee, Amitava, et al. (author)
  • Unveiling the thermodynamic and kinetic properties of NaxFe(SO4)(2) (x=0-2) : toward a high-capacity and low-cost cathode material
  • 2016
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:46, s. 17960-17969
  • Journal article (peer-reviewed)abstract
    • The mineral eldfellite, NaFe(SO4)(2), was recently proposed as an inexpensive candidate for the next generation of cathode application in Na-based batteries. Employing the density functional theory framework, we have investigated the phase stability, electrochemical properties and ionic diffusion of this eldfellite cathode material. We showed that the crystal structure undergoes a volume shrinkage of approximate to 8% upon full removal of Na ions with no imaginary frequencies at the Gamma point of phonon dispersion. This evokes the stability of the host structure. According to this result, we proposed structural changes to get higher specific energy by inserting two Na ions per redox-active metal. Our calculations indicate NaV(SO4)(2) as the best candidate with the capability of reversibly inserting two Na ions per redox center and producing an excellent specific energy. The main bottleneck for the application of eldfellite as a cathode is the high activation energies for the Na+ ion hop, which can reach values even higher than 1 eV for the charged state. This effect produces a low ionic insertion rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 198
Type of publication
journal article (193)
research review (5)
Type of content
peer-reviewed (194)
other academic/artistic (3)
pop. science, debate, etc. (1)
Author/Editor
Inganäs, Olle (16)
Ahuja, Rajeev (11)
Kloo, Lars (9)
Chakraborty, Sudip (9)
Sun, Licheng (9)
Jannasch, Patric (7)
show more...
Banerjee, Amitava (7)
Wang, Ergang, 1981 (7)
Berggren, Magnus (6)
Rensmo, Håkan (6)
Boschloo, Gerrit (6)
Younesi, Reza (6)
Gustafsson, Torbjörn (6)
Araujo, Rafael B. (6)
Andersson, Mats, 196 ... (5)
Crispin, Xavier (5)
Salazar-Alvarez, Ger ... (5)
Sun, Licheng, 1962- (5)
Johansson, Erik M. J ... (5)
Hedenqvist, Mikael S ... (5)
Edström, Kristina (5)
Olsson, Richard T. (5)
Vagin, Mikhail (4)
Melianas, Armantas (4)
Müller, Christian, 1 ... (4)
Johansson, Patrik, 1 ... (4)
Zhang, Fengling (4)
Xu, Chao (4)
Hagfeldt, Anders (4)
Hedlund, Jonas (4)
Karlsson, Maths, 197 ... (4)
Yang, Xichuan (4)
Ahuja, Rajeev, 1965- (3)
Wang, Mei (3)
Zheng, Kaibo (3)
Liu, Xianjie (3)
Granberg, Hjalmar (3)
Gubanski, Stanislaw, ... (3)
Vomiero, Alberto (3)
Ajjan, Fátima (3)
Tai, Cheuk-Wai (3)
Strømme, Maria, 1970 ... (3)
Wahnström, Göran, 19 ... (3)
Edström, Kristina, P ... (3)
Liu, Peng (3)
Ederth, Thomas (3)
Cappel, Ute B. (3)
Andersson, Richard L ... (3)
Pham, Thanh Huong (3)
Olsson, Joel (3)
show less...
University
Uppsala University (53)
Royal Institute of Technology (50)
Linköping University (38)
Chalmers University of Technology (35)
Stockholm University (15)
Lund University (13)
show more...
Luleå University of Technology (8)
Karlstad University (8)
RISE (6)
Umeå University (5)
University of Gothenburg (2)
Mid Sweden University (2)
Swedish University of Agricultural Sciences (2)
show less...
Language
English (198)
Research subject (UKÄ/SCB)
Natural sciences (173)
Engineering and Technology (63)
Medical and Health Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view