SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Agresti F.) srt2:(2013)"

Search: WFRF:(Agresti F.) > (2013)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Battiston, S., et al. (author)
  • Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials
  • 2013
  • In: Journal of Electronic Materials. - New York : Springer. - 0361-5235 .- 1543-186X. ; 42:7, s. 1956-1959
  • Journal article (peer-reviewed)abstract
    • Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1:x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density > 95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600A degrees C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600A degrees C.
  •  
2.
  • Famengo, A., et al. (author)
  • Phase Content Influence on Thermoelectric Properties of Manganese Silicide-Based Materials for Middle-High Temperatures
  • 2013
  • In: Journal of Electronic Materials. - New York : Springer. - 0361-5235 .- 1543-186X. ; 42:7, s. 2020-2024
  • Journal article (peer-reviewed)abstract
    • The higher manganese silicides (HMS), represented by MnSi (x) (x = 1.71 to 1.75), are promising p-type leg candidates for thermoelectric energy harvesting systems in the middle-high temperature range. They are very attractive as they could replace lead-based compounds due to their nontoxicity, low-cost starting materials, and high thermal and chemical stability. Dense pellets were obtained through direct reaction between Mn and Si powders during the spark plasma sintering process. The tetragonal HMS and cubic MnSi phase amounts and the functional properties of the material such as the Seebeck coefficient and electrical and thermal conductivity were evaluated as a function of the SPS processing conditions. The morphology, composition, and crystal structure of the samples were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction analyses, respectively. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal stability of the final sintered material. A ZT value of 0.34 was obtained at 600A degrees C for the sample sintered at 900A degrees C and 90 MPa with 5 min holding time.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view