SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ahmadian A.) srt2:(1996-1999)"

Search: WFRF:(Ahmadian A.) > (1996-1999)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Williams, Cecilia, 1969-, et al. (author)
  • Clones of normal keratinocytes and a variety of simultaneously present epidermal neoplastic lesions contain a multitude of p53 gene mutations in a xeroderma pigmentosum patient.
  • 1998
  • In: Cancer Research. - 0008-5472 .- 1538-7445. ; 58:11
  • Journal article (peer-reviewed)abstract
    • A patient with xeroderma pigmentosum group C was extensively examined for mutations in the p53 gene in normal skin exposed to varying degrees of sunlight and in excisional biopsies of basal cell cancer, squamous cell cancer, and squamous cell dysplasia. Seventy-three samples were analyzed by microdissection of small cell clusters, followed by PCR and direct DNA sequencing. In skin taken from areas that most likely had never been exposed to the sun, no mutations were found. However, in skin exposed to the sun, we observed a multitude of mutations in the p53 gene. UV light-induced mutations were found in all types of lesions, as well as in clusters of morphologically normal epidermal cells. Twenty-nine distinct mutations were found in exons 5-8, all missense or nonsense, of which 27 (93%) were UV-specific C --> T or CC --> TT transitions at dipyrimidine sites of the nontranscribed strand. Two types of normal skin areas containing p53 mutations were observed: areas that stain strongly with p53 antibody (p53 patches) and those that do not stain. Because no silent or intron mutations were found in these cell clusters, the alterations in the p53 gene of morphologically normal cells are likely to have resulted in a selective growth advantage. The poor correlation between mutations and morphological phenotypes demonstrates that p53 mutations alone do not determine the phenotypes observed.
  •  
3.
  •  
4.
  • Odeberg, J, et al. (author)
  • Context-dependent Taq-polymerase-mediated nucleotide alterations, as revealed by direct sequencing of the ZNF189 gene : implications for mutation detection.
  • 1999
  • In: Gene. - 0378-1119 .- 1879-0038. ; 235:1-2
  • Journal article (peer-reviewed)abstract
    • We have recently reported on the genetic organisation of a novel Krüppel-like zinc finger, ZNF189, located to 9q22-q31. In that study we found no mutations in the coding sequence when using ZNF189 as a candidate gene for sporadic basal cell cancer and squamous cell cancer. Here, by direct sequencing of the proximal promotor of ZNF189, mutations were found to appear in a small hot-spot region in over 50% of analysed tumour samples, the majority being G to A substitutions. The hot-spot region spans a 24bp G-rich region. Repeated analyses of the original sample lysates fail to confirm each of these mutations; and frequently new mutations appear at neighbouring positions. Subsequent analysis with serial dilutions of genomic DNA and a cosmid harbouring the wild-type ZNF189 gene demonstrate that these sequence-specific alterations arise in the outer PCR-amplification when 50 copies or less of template are used. Although the mechanism of how these context-specific alterations arise is not proven, the results demonstrate a previously unreported type of PCR-mediated sequence-specific alteration that easily could have been interpreted as being of clinical relevance. The phenomena observed show that mutations detected by direct sequencing can be caused by PCR-introduced alterations. Consequently, this should be of general caution in mutation analysis of disease gene candidates when using small amounts of template, such as microdissected biopsies.
  •  
5.
  •  
6.
  • Pontén, F, et al. (author)
  • Genomic analysis of single cells from human basal cell cancer using laser-assisted capture microscopy.
  • 1997
  • In: Mutation research. - 0027-5107 .- 1873-135X. ; 382:1-2
  • Journal article (peer-reviewed)abstract
    • In this study, we show that direct mutational analysis of genomic DNA can be performed on single somatic cells extracted from a frozen, immunohistochemically stained tissue section using laser-assisted capture microscopy. Eighty-nine single tumor cells were separately dissected from one case of human basal cell cancer (BCC) and p53 mutations were analyzed by direct semi-automated sequencing of PCR fragments. Amplification was obtained for at least one of the two analyzed exons from approximately 50% of the single tumor cells. Identical p53 mutations were found in widely spread areas of the tumor, suggesting a clonal proliferation originating from one cell. Interestingly, comparison between results of immunohistochemistry and genetic analysis of the single cells revealed the same p53 mutations irrespective of the p53 immunoreactivity. We propose that this approach has a great potential to allow investigation of genotypic differences in single cells and more specifically to resolve important and fundamental questions determining cancer heterogeneity.
  •  
7.
  •  
8.
  • Pontén, F, et al. (author)
  • Molecular pathology in basal cell cancer with p53 as a genetic marker.
  • 1997
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 15:9
  • Journal article (peer-reviewed)abstract
    • Human basal cell cancer (BCC) has unique growth characteristics with virtual inability to metastasize. We investigated clonality and genetic progression using p53 mutations as marker. Sampling was done through microdissection of frozen immunohistochemically stained 16 microm slices of tumors. From 11 BCC tumors 78 samples were analysed. Direct DNA sequencing of exons 5-8 was performed, haplotypes were determined after cloning of p53 exons and loss of heterozygosity (LOH) ascertained by microsatellite analysis. All tumors had p53 mutations and in a majority both p53 alleles were affected, commonly through missense mutations. Microdissection of small parts (50-100 cells) of individual tumors showed BCC to be composed of a dominant cell clone and prone to genetic progression with appearance of subclones with a second and even third p53 mutation. Samples from normal immunohistochemically negative epidermis always showed wild type sequence, except for a case of previously unknown germline p53 mutation. Our analysis also included p53 immunoreactive patches i.e. morphologically normal epidermis with a compact pattern of p53 immunoreactivity. Mutations within those were never the same as in the adjacent BCC. This detailed study of only one gene thus uncovered a remarkable heterogeneity within a tumor category famous for its benign clinical behavior.
  •  
9.
  •  
10.
  • Ren, Z. P., et al. (author)
  • Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin
  • 1997
  • In: American Journal of Pathology. - : American Society for Investigative Pathology and the Association for Molecular Pathology. - 0002-9440 .- 1525-2191. ; 150:5, s. 1791-803
  • Journal article (peer-reviewed)abstract
    • Ultraviolet light, which is the major etiology of human skin cancer, will cause mutations in the p53 gene. We and others have found that such mutations occur in more than one-half of non-melanoma squamous cell cancer and precancer. Immunostaining for p53 has disclosed a characteristic compact pattern not only in cancer/precancer but also in areas of microscopically normal epidermis termed p53 patches. By microdissection, sequence analysis of the p53 gene, and analysis of loss of heterozygosity (LOH) at the site of this gene, we have now extended previous data to ascertain whether these p53 patches are precursors of simultaneously present squamous cell cancer or its morphologically recognized precancerous stages (dysplasia, carcinoma in situ). In none of 11 instances with co-existence of a p53 patch with dysplasia or in situ or invasive cancer were the mutations identical. We conclude that p53 patches, estimated to be approximately 100,000 times as common as dysplasia, have a very small or even no precancerous potential. Their common presence demonstrates that human epidermis contains a large number of p53 mutations apparently without detrimental effect. The only result of the mutation may be a clandestine benign clonal keratinocyte proliferation. The importance of p53 mutations for such benign cell multiplication on one band and malignant transformation on the other is unclear. Although the spectrum, type, and multiplicity of mutations were similar in both types of proliferative responses, there was a clear difference with respect to LOH. No LOH was found in 17 p53 patches. By contrast 11 of 30 precancers/cancers had LOH.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view