SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ali Zaheer) srt2:(2020)"

Search: WFRF:(Ali Zaheer) > (2020)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbas, Zaheer, et al. (author)
  • In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker
  • 2020
  • In: Sensors. - : MDPI. - 1424-8220. ; 20:1
  • Journal article (peer-reviewed)abstract
    • Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pgmL(-1) to 50 ng.mL(-1) with signal sensitivity achievable up to 0.15 pgmL(-1). The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.
  •  
2.
  • Ali, Zaheer, et al. (author)
  • Abstract 6124 : Translation of zebrafish tumor-derived xenograft-models for improved diagnosis and treatment planning in urinary bladder cancer patients
  • 2020
  • In: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 80:6 Supplement, s. 6124-6124
  • Journal article (peer-reviewed)abstract
    • Precision medicine in oncology aims to identify the most effective treatment for any given patient based on individualized analyses of patient material. Currently, precision medicine relies on sequencing of DNA or RNA to identify patient tumor-specific mutational profiles that may be coupled to drug response. These techniques, however, fail to reveal actionable mutations in approximately 85% of the cancer patients, and have not been established at all for many commonly used drugs including cisplatin-based treatments used in urinary bladder cancer. While mouse-PDX models can determine drug response rates with high accuracy in most patients and for most drugs, such techniques are too slow and expensive to be relevant for first line treatment planning. Urinary bladder cancer patients are often treated with cisplatin-containing combination therapy, with the hope of down-staging tumors before surgery. 60%, however, do not respond or even progress on this treatment, and these patients would benefit from immediate surgery upon diagnosis. To help identify non-responding patients, we show here that patient-derived tumor xenograft models can be established in zebrafish larvae (ZTX models) and that the resulting tumors exhibit differential responses to the two main cisplatin-containing treatments GC and MVAC.Preliminary results from the first 19 patients are presented. Two tumor biopsies were destroyed during transport and two did not allow isolation of sufficient viable cells for implantation. From the remaining 15 samples an average of 2,6 million cells with average viability of 53% were isolated and used to implant at least 60 2-days old larvae. All 15 samples implanted in the larvae and survived and/or grew exhibiting varying degrees of metastatic dissemination (average between 2 and 13 metastasized cells per embryo and model) within only three days from implantation. Four ZTX models exhibited different responses to GC and MVAC demonstrating that these treatments are not equally effective in all patients. Non-response in ZTX models was associated with tumors having re-appeared in the bladder upon radical cystectomy in all patients undergoing surgery prior to Dec. 5th 2019 (n=3). GC inhibited metastasis in all models (average 69% inhibition), whereas MVAC inhibited metastasis in 40% of the models (average 36% inhibition).In conclusion: The ZTX urinary bladder cancer platform presented here overcome limitations associated with long assay time and high cost of other functional models within precision medicine as well as the low hit-rate of actionable mutations associated with genomic techniques. ZTX models will therefore likely become a powerful method for functional precision medicine within oncology, in the near future.
  •  
3.
  • Ali, Zaheer, et al. (author)
  • Photoreceptor Degeneration Accompanies Vascular Changes in a Zebrafish Model of Diabetic Retinopathy
  • 2020
  • In: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 61:2
  • Journal article (peer-reviewed)abstract
    • PURPOSE. Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR. METHODS. Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography. RESULTS. Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness. CONCLUSIONS. This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.
  •  
4.
  • Ali, Zaheer, et al. (author)
  • Synchronized tissue-scale vasculogenesis and ubiquitous lateral sprouting underlie the unique architecture of the choriocapillaris
  • 2020
  • In: Developmental Biology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0012-1606 .- 1095-564X. ; 457:2, s. 206-214
  • Journal article (peer-reviewed)abstract
    • The choriocapillaris is an exceptionally high density, two-dimensional, sheet-like capillary network, characterized by the highest exchange rate of nutrients for waste products per area in the organism. These unique morphological and physiological features are critical for supporting the extreme metabolic requirements of the outer retina needed for vision. The developmental mechanisms and processes responsible for generating this unique vascular network remain, however, poorly understood. Here we take advantage of the zebrafish as a model organism for gaining novel insights into the cellular dynamics and molecular signaling mechanisms involved in the development of the choriocapillaris. We show for the first time that zebrafish have a choriocapillaris highly similar to that in mammals, and that it is initially formed by a novel process of synchronized vasculogenesis occurring simultaneously across the entire outer retina. This initial vascular network expands by un-inhibited sprouting angiogenesis whereby all endothelial cells adopt tip-cell characteristics, a process which is sustained throughout embryonic and early post-natal development, even after the choriocapillaris becomes perfused. Ubiquitous sprouting was maintained by continuous VEGF-VEGFR2 signaling in endothelial cells delaying maturation until immediately before stages where vision becomes important for survival, leading to the unparalleled high density and lobular structure of this vasculature. Sprouting was throughout development limited to two dimensions by Bruchs membrane and the sclera at the anterior and posterior surfaces respectively. These novel cellular and molecular mechanisms underlying choriocapillaris development were recapitulated in mice. In conclusion, our findings reveal novel mechanisms underlying the development of the choriocapillaris during zebrafish and mouse development. These results may explain the uniquely high density and sheet-like organization of this vasculature.
  •  
5.
  • Dayo, Zaheer Ahmed, et al. (author)
  • A Compact High-Gain Coplanar Waveguide-Fed Antenna for Military RADAR Applications
  • 2020
  • In: International Journal of Antennas and Propagation. - : HINDAWI LTD. - 1687-5869 .- 1687-5877. ; 2020
  • Journal article (peer-reviewed)abstract
    • This paper presents a new design of a compact, high-gain coplanar waveguide-fed antenna and proposes a multielement approach to attain enhanced characteristics. The proposed method overcomes the simulation and geometrical complexity and achieves optimal performance features. The antenna prototype is carefully designed, and simulation results have been analyzed. The proposed antenna was fabricated on a new WangLing TP-2 laminate with dimensions (0.195 lambda x 0.163 lambda x 0.0052 lambda) at the lowest resonance of 9.78 GHz. The results have been tested and experimentally verified. The antenna model achieved excellent performance including a peak realized gain better than 9.0 dBi, optimal radiation efficiency better than 87.6% over the operating band, and a good relative bandwidth of 11.48% at 10 dB return loss. Symmetrical stable far-field radiation pattern in orthogonal planes and strong distribution of current are observed. Moreover, a comparative analysis with state-of-the-artwork is presented. The measured and simulation result shows a good agreement. The high-performance antenna results reveal that the proposed model is a good contender of military airborne, land, and naval radar applications.
  •  
6.
  • Karjosukarso, Dyah W., et al. (author)
  • Modeling ZNF408-Associated FEVR in Zebrafish Results in Abnormal Retinal Vasculature
  • 2020
  • In: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 61:2
  • Journal article (peer-reviewed)abstract
    • PURPOSE. Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. METHODS. Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. RESULTS. Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. CONCLUSIONS. Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.
  •  
7.
  • Merrigan, Stephanie L., et al. (author)
  • Calcitriol and non-calcemic vitamin D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis ex vivo and in vivo
  • 2020
  • In: Oncotarget. - : Impact Journals. - 1949-2553. ; 11:5, s. 493-509
  • Journal article (peer-reviewed)abstract
    • Aberrant ocular angiogenesis can underpin vision loss in leading causes of blindness, including neovascular age-related macular degeneration and proliferative diabetic retinopathy. Current pharmacological interventions require repeated invasive administrations, may lack efficacy and are associated with poor patient compliance and tachyphylaxis. Vitamin D has de novo anti-angiogenic properties. Here, our aim was to validate the ocular anti-angiogenic activity of biologically active vitamin D, calcitriol, and selected vitamin D analogue, 22-oxacalcitriol. Calcitriol induced a significant reduction in ex vivo mouse choroidal fragment sprouting. Viability studies in a human RPE cell line suggested non-calcemic vitamin D analogues including 22-oxacalcitriol have less off-target anti-proliferative activity compared to calcitriol and other analogues. Thereafter, the anti-angiogenic activity of 22-oxacalcitriol was demonstrated in an ex vivo mouse choroidal fragment sprouting assay. In zebrafish larvae, 22-oxacalcitriol was found to be anti-angiogenic, inducing a dose-dependent reduction in choriocapillaris development. Subcutaneously administered calcitriol failed to attenuate mouse retinal vasculature development. However, calcitriol and 22-oxacalcitriol administered intraperitoneally, significantly attenuated lesion volume in the laser-induced choroidal neovascularisation mouse model. In summary, calcitriol and 22-oxacalcitriol attenuate ex vivo and in vivo choroidal vasculature angiogenesis. Therefore, vitamin D may have potential as an interventional treatment for ophthalmic neovascular indications.
  •  
8.
  • Ward, Rebecca, et al. (author)
  • Pharmacological restoration of visual function in a zebrafish model of von-Hippel Lindau disease
  • 2020
  • In: Developmental Biology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0012-1606 .- 1095-564X. ; 457:2, s. 226-234
  • Journal article (peer-reviewed)abstract
    • Von Hippel-Lindau (VHL) syndrome is a rare, autosomal dominant disorder, characterised by hypervascularised tumour formation in multiple organ systems. Vision loss associated with retinal capillary hemangioblastomas remains one of the earliest complications of VHL disease. The mortality of Vhl(-/-) mice in utero restricted modelling of VHL disease in this mammalian model. Zebrafish harbouring a recessive germline mutation in the vhl gene represent a viable, alternative vertebrate model to investigate associated ocular loss-of-function phenotypes. Previous studies reported neovascularisation of the brain, eye and trunk together with oedema in the vhl(-/-) zebrafish eye. In this study, we demonstrate vhl(-/-) zebrafish almost entirely lack visual function. Furthermore, hyaloid vasculature networks in the vhl(-/-) eye are improperly formed and this phenotype is concomitant with development of an ectopic intraretinal vasculature. Sunitinib malate, a multi tyrosine kinase inhibitor, market authorised for cancer, reversed the ocular behavioural and morphological phenotypes observed in vhl(-/-) zebrafish. We conclude that the zebrafish yid gene contributes to an endogenous molecular barrier that prevents development of intraretinal vasculature, and that pharmacological intervention with sunitinib can improve visual function and hyaloid vessel patterning while reducing abnormally formed ectopic intraretinal vessels in vhl(-/-) zebrafish.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view