SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Almén Markus Sällman) srt2:(2015)"

Search: WFRF:(Almén Markus Sällman) > (2015)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ayllon, Fernando, et al. (author)
  • The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males
  • 2015
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.
  •  
2.
  • Dorshorst, Ben, et al. (author)
  • Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:6
  • Journal article (peer-reviewed)abstract
    • Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1R(D)) and Recessive Red (MC1R(e)). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1R(D). Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by down regulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.
  •  
3.
  • Krishnan, Arunkumar, et al. (author)
  • Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families
  • 2015
  • In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 91, s. 27-40
  • Journal article (peer-reviewed)abstract
    • Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages.
  •  
4.
  • Lamichhaney, Sangeet, et al. (author)
  • Evolution of Darwin's finches and their beaks revealed by genome sequencing
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7539
  • Journal article (peer-reviewed)abstract
    • Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives' Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial. development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis) a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and thereby, to an expanded utilization of food resources.
  •  
5.
  • Le Duc, Diana, et al. (author)
  • Kiwi genome provides insights into evolution of a nocturnal lifestyle
  • 2015
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 16
  • Journal article (peer-reviewed)abstract
    • Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
  •  
6.
  • Nilsson, Emil, et al. (author)
  • Roux-En Y Gastric Bypass Surgery Induces Genome-Wide Promoter-Specific Changes in DNA Methylation in Whole Blood of Obese Patients
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:2
  • Journal article (peer-reviewed)abstract
    • ContextDNA methylation has been proposed to play a critical role in many cellular and biological processes.ObjectiveTo examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription.MethodsPromoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m2, 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast.ResultsThe mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points.ConclusionsEpigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery.Clinical TrialClinicalTrials.gov NCT01730742
  •  
7.
  • Rask-Andersen, Mathias, et al. (author)
  • Association of the LINGO2-related SNP rs10968576 with body mass in a cohort of elderly Swedes
  • 2015
  • In: Molecular Genetics and Genomics. - : Springer Science and Business Media LLC. - 1617-4615 .- 1617-4623. ; 290:4, s. 1485-1491
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified common genetic factors influencing body mass as well as body adiposity. The functional implications of these loci are currently under investigation. Intense scrutiny of the body mass-associated FTO locus revealed age-specific effects, or a weakened effect in elderly populations. In this study, we aimed to determine the effects of single nucleotide polymorphisms (SNPs) representing 35 GWAS-identified body mass- and adiposity-associated genetic loci. In our analysis, 949 participants of the Prospective Investigation of the Vasculature in Uppsala Seniors cohort were included. All participants were born between 1920 and 1924. Data were available for 474 male and 475 female participants at age 70 and 380 male and 390 female participants at age 75. Genetic associations with BMI and change in BMI from age 70 to 75 were analyzed. In our analysis, rs10968576, an intronic SNP within the LINGO2 (LERN3, LRRN6C) gene, was associated with body mass in a cross section of elderly Swedes at age 70. This is the first study to replicate the association of a LINGO2-related genetic variant with body mass in an independent cohort of elderly citizens.
  •  
8.
  • Rask-Andersen, Mathias, et al. (author)
  • Determination of obesity associated gene variants related to TMEM18 through ultra-deep targeted re-sequencing in a case-control cohort for pediatric obesity.
  • 2015
  • In: Genetical Research. - 0016-6723 .- 1469-5073. ; 97
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have revealed association of a locus approximately 25b downstream of the TMEM18 gene with body mass and obesity. We utilized targeted re-sequencing of the body mass associated locus in proximity of TMEM18 in a case-control population of severely obese children and adolescents from the Stockholm area. We expanded our study to include the TMEM18 gene itself, with the aim of identifying body mass associated genetic variants. Sequencing was performed on the SOLiD platform, on long-range PCR fragments generated through targeted amplification of the regions of interest. Candidate single nucleotide polymorphisms (SNPs) were validated by TaqMan genotyping. We were able to observe 131 SNPs across the re-sequenced regions. Chi squared tests comparing the allele frequencies between cases and controls revealed 57 SNPs as candidates for association with obesity. Validation and replication genotyping revealed robust associations for SNPs within the haplotype block region located downstream from the TMEM18 gene. This study provides a high resolution map of the genetic variation pattern in the TMEM18 gene, as well as the associated haplotype block, and further strengthens the association of variants within the proximal haplotype block with obesity and body mass.
  •  
9.
  • Voisin, Sarah, et al. (author)
  • Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers
  • 2015
  • In: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 7
  • Journal article (peer-reviewed)abstract
    • Background: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles. Methods: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149). Results: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts. Conclusions: Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view