SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Anguner E.) srt2:(2015)"

Search: WFRF:(Anguner E.) > (2015)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abramowski, A., et al. (author)
  • Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 446:2, s. 1163-1169
  • Journal article (peer-reviewed)abstract
    • The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position RA = 18(h)32(m)50(s) +/- 3(stat)(s) +/- 2(syst)(s), Dec = -9 degrees 22'36 '' +/- 32(stat)'' +/- 20(syst)'' (J2000), spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Gamma = 2.6 +/- 0.3(stat) +/- 0.1(syst) and a normalization at 1 TeV of Phi(0) = (4.8 +/- 0.8(stat) +/- 1.0(syst)) x 10(-13) cm(-2) s(-1) TeV-1. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.
  •  
2.
  • Abramowski, A., et al. (author)
  • Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Journal article (peer-reviewed)abstract
    • Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.
  •  
3.
  • Abramowski, A., et al. (author)
  • Discovery of variable VHE gamma-ray emission from the binary system 1FGL J1018.6-5856
  • 2015
  • In: Astronomy and Astrophysics Supplement Series. - : EDP Sciences. - 0365-0138 .- 1286-4846. ; 577
  • Journal article (peer-reviewed)abstract
    • Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018-589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ$^2$/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018-589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018-589 A is best fit with a power-law function with photon index Γ = 2.20 \plusmn 0.14$_stat$ \plusmn 0.2$_sys$. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 \plusmn 0.4) \times 10$^-13$ TeV$^-1$ cm$^-2$ s$^-1$ at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of N$_sigma$\gt 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ \lsim 1 at 300 GeV).
  •  
4.
  • Abramowski, A., et al. (author)
  • Constraints on an Annihilation Signal from a Core of Constant Dark Matter Density around the Milky Way Center with HESS
  • 2015
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:8
  • Journal article (peer-reviewed)abstract
    • An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of similar to 9 h of on-off observations. Upper limits on the velocity averaged cross section, , for the annihilation of dark matter particles with masses in the range of similar to 300 GeV to similar to 10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of that are larger than 3 x 10(-24) cm(3)/s are excluded for dark matter particles with masses between similar to 1 and similar to 4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
  •  
5.
  • Abramowski, A., et al. (author)
  • H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574, s. 1-7
  • Journal article (peer-reviewed)abstract
    • G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE; 0.1 GeV < E < 100 GeV) gamma-rays. Radio and infrared observations indicate that the remnant is interacting with a molecular cloud. In this paper, the detection of very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with this SNR with the High Energy Stereoscopic System (HESS.) is reported. This makes it one of the farthest Galactic SNR ever detected in this domain. An integral flux F(E > 400 GeV) = (6.5 +/- 1.1(stat) +/- 1.3(syst)) x 10-11 ph cm(-2) s(-1) corresponding to similar to 0.7% of that of the Crab Nebula and to a luminosity of similar to 10(34) erg s(-1) above the same energy threshold, and a steep photon index Gamma(VHE) = 2.8 +/- 0.27(stat) +/- 0.20(syst) are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index Gamma(HE) = 2.2 +/- 0.04.2(stat-0.31sys)(+0.13), The combined gamma-ray spectrum of 0349.7+0.2 can be described by either a broken power law (I3PL) or a power law with exponential (or sub exponential) cutoff (PLC). In the former case, the photon break energy is found at E-br,E-gamma = 551(-30)(+70) GeV, slightly higher than what is usually observed in the HE/VHE gamma-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case. the exponential (respectively sub-exponential) cutoff energy is measured at E-cat,E-gamma = 1.4(-0.55)(+1.6) (respectively 0.35(-0.21)(+0.75)) TeV. A pion decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the gamma-ray emission. The BPL with a spectral steepening of 0.5-1 and the PLC provide equally good fits to the data. The product or the average gas density and the total energy content of accelerated protons and nuclei amounts to nu W-p similar to 5 x 10(51) erg cm(-3)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view