SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arendt A. A.) srt2:(2020-2023)"

Sökning: WFRF:(Arendt A. A.) > (2020-2023)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
4.
  •  
5.
  • Abreu, A., et al. (författare)
  • Priorities for ocean microbiome research
  • 2022
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 7:7, s. 937-947
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the ocean microbiome can inform international policies related to ocean governance, tackling climate change, ocean acidification and pollution, and can help promote achievement of multiple Sustainable Development Goals. Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 'life below water'. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
  •  
6.
  •  
7.
  •  
8.
  • Fernandez-de-las-Penas, C., et al. (författare)
  • Carpal Tunnel Syndrome: Neuropathic Pain Associated or Not with a Nociplastic Condition
  • 2023
  • Ingår i: Biomedicines. - 2227-9059. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Carpal tunnel syndrome (CTS) has been traditionally classified as primarily a neuropathic condition with or without pain. Precision medicine refers to an evidence-based method of grouping patients based on their susceptibility to biology, prognosis of a particular disease, or in their response to a specific treatment, and tailoring specific treatments accordingly. In 2021, the International Association for the Study of Pain (IASP) proposed a grading system for classifying patients into nociceptive, neuropathic, or nociplastic phenotypes. This position paper presents data supporting the possibility of subgrouping individuals with specific CTS related-pain into nociceptive, neuropathic, nociplastic or mixed-type phenotypes. Carpal tunnel syndrome is a neuropathic condition but can also be comorbid with a nociplastic pain condition. The presence of extra-median symptoms and the development of facilitated pain processing seem to be signs suggesting that specific CTS cases can be classified as the nociplastic pain phenotype. The clinical responses of therapeutic approaches for the management of CTS are inconclusive. Accordingly, the ability to identify the predominant pain phenotype in patients with CTS could likely be problematic for producing efficient treatment outcomes. In fact, the presence of a nociplastic or mixed-type pain phenotype would explain the lack of clinical effect of treatment interventions targeting the carpal tunnel area selectively. We propose a clinical decision tree by using the 2021 IASP classification criteria for identifying the predominant pain phenotype in people with CTS-related pain, albeit CTS being a priori a neuropathic pain condition. The identification of a nociplastic-associated condition requires a more nuanced multimodal treatment approach to achieve better treatment outcomes.
  •  
9.
  • Shraim, M. A., et al. (författare)
  • Features and methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a Delphi expert consensus study
  • 2022
  • Ingår i: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 163:9, s. 1812-1828
  • Tidskriftsartikel (refereegranskat)abstract
    • Classification of musculoskeletal pain based on underlying pain mechanisms (nociceptive, neuropathic, and nociplastic pain) is challenging. In the absence of a gold standard, verification of features that could aid in discrimination between these mechanisms in clinical practice and research depends on expert consensus. This Delphi expert consensus study aimed to: (1) identify features and assessment findings that are unique to a pain mechanism category or shared between no more than 2 categories and (2) develop a ranked list of candidate features that could potentially discriminate between pain mechanisms. A group of international experts were recruited based on their expertise in the field of pain. The Delphi process involved 2 rounds: round 1 assessed expert opinion on features that are unique to a pain mechanism category or shared between 2 (based on a 40% agreement threshold); and round 2 reviewed features that failed to reach consensus, evaluated additional features, and considered wording changes. Forty-nine international experts representing a wide range of disciplines participated. Consensus was reached for 196 of 292 features presented to the panel (clinical examination-134 features, quantitative sensory testing-34, imaging and diagnostic testing-14, and pain-type questionnaires-14). From the 196 features, consensus was reached for 76 features as unique to nociceptive (17), neuropathic (37), or nociplastic (22) pain mechanisms and 120 features as shared between pairs of pain mechanism categories (78 for neuropathic and nociplastic pain). This consensus study generated a list of potential candidate features that are likely to aid in discrimination between types of musculoskeletal pain.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy