SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Astier P. L.) srt2:(2020-2023)"

Search: WFRF:(Astier P. L.) > (2020-2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maksimovic, M., et al. (author)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
2.
  • Maksimovic, M., et al. (author)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
3.
  • Ares-Blanco, S., et al. (author)
  • Clinical pathway of COVID-19 patients in primary health care in 30 European countries: Eurodata study
  • 2023
  • In: European Journal of General Practice. - : Informa UK Limited. - 1381-4788 .- 1751-1402. ; 29:2
  • Journal article (peer-reviewed)abstract
    • BackgroundMost COVID-19 patients were treated in primary health care (PHC) in Europe.ObjectivesTo demonstrate the scope of PHC workflow during the COVID-19 pandemic emphasising similarities and differences of patient's clinical pathways in Europe.MethodsDescriptive, cross-sectional study with data acquired through a semi-structured questionnaire in PHC in 30 European countries, created ad hoc and agreed upon among all researchers who participated in the study. GPs from each country answered the approved questionnaire. Main variable: PHC COVID-19 acute clinical pathway. All variables were collected from each country as of September 2020.ResultsCOVID-19 clinics in PHC facilities were organised in 8/30. Case detection and testing were performed in PHC in 27/30 countries. RT-PCR and lateral flow tests were performed in PHC in 23/30, free of charge with a medical prescription. Contact tracing was performed mainly by public health authorities. Mandatory isolation ranged from 5 to 14 days. Sick leave certification was given exclusively by GPs in 21/30 countries. Patient hotels or other resources to isolate patients were available in 12/30. Follow-up to monitor the symptoms and/or new complementary tests was made mainly by phone call (27/30). Chest X-ray and phlebotomy were performed in PHC in 18/30 and 23/30 countries, respectively. Oxygen and low-molecular-weight heparin were available in PHC (21/30).ConclusionIn Europe PHC participated in many steps to diagnose, treat and monitor COVID-19 patients. Differences among countries might be addressed at European level for the management of future pandemics.
  •  
4.
  • Guisado-Clavero, M., et al. (author)
  • The role of primary health care in long-term care facilities during the COVID-19 pandemic in 30 European countries: a retrospective descriptive study (Eurodata study)
  • 2023
  • In: Primary Health Care Research and Development. - 1463-4236. ; 24
  • Journal article (peer-reviewed)abstract
    • Background and aim:Primary health care (PHC) supported long-term care facilities (LTCFs) in attending COVID-19 patients. The aim of this study is to describe the role of PHC in LTCFs in Europe during the early phase of the pandemic.Methods:Retrospective descriptive study from 30 European countries using data from September 2020 collected with an ad hoc semi-structured questionnaire. Related variables are SARS-CoV-2 testing, contact tracing, follow-up, additional testing, and patient care.Results:Twenty-six out of the 30 European countries had PHC involvement in LTCFs during the COVID-19 pandemic. PHC participated in initial medical care in 22 countries, while, in 15, PHC was responsible for SARS-CoV-2 test along with other institutions. Supervision of individuals in isolation was carried out mostly by LTCF staff, but physical examination or symptom's follow-up was performed mainly by PHC.Conclusion:PHC has participated in COVID-19 pandemic assistance in LTCFs in coordination with LTCF staff, public health officers, and hospitals.
  •  
5.
  • Petrache, C. M., et al. (author)
  • Signatures of enhanced octupole correlations at high spin in Nd 136
  • 2020
  • In: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 102:1
  • Journal article (peer-reviewed)abstract
    • Experimental signatures of moderately enhanced octupole correlations at high spin in Nd136 are indicated for the first time. The extracted dipole moments of two negative-parity bands are only two times smaller than those of the lanthanide nuclei with N≈90 which present well-established octupole correlations. Calculations using the cranked quasiparticle random phase approximation and a model of quadrupole-octupole rotations with octupole vibrations reveal the structure of the bands and the enhanced octupole correlations at high spin in Nd136.
  •  
6.
  • Guo, S., et al. (author)
  • Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations
  • 2020
  • In: Physics Letters B. - : ELSEVIER. - 0370-2693 .- 1873-2445. ; 807
  • Journal article (peer-reviewed)abstract
    • Three nearly degenerate pairs of doublet bands are identified in Ba-131. Two of them, with positive-parity, are interpreted as pseudospin-chiral quartet bands. This is the first time that a complete set of chiral doublet bands built on the pseudospin partners pi(d(5/2), g(7/2)) is observed. The chiral bands with opposite parity built on 3-quasiparticle configurations are directly connected by many E1 transitions, without involving an intermediary non-chiral configuration. The observed band structures in Ba-131 have been investigated by using the reflection-asymmetric particle rotor model. The energies and the electromagnetic transition ratios of the three pairs of doublet bands observed in Ba-131 are reproduced and they are interpreted as chiral doublet bands with three-quasiparticle configurations. It is the first time that multiple chiral bands are observed in the presence of enhanced octupole correlations and pseudospin symmetry. 
  •  
7.
  • Vecchio, A., et al. (author)
  • Solar Orbiter/RPW antenna calibration in the radio domain and its application to type III burst observations
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656, s. A33-
  • Journal article (peer-reviewed)abstract
    • Context. In order to allow for a comparison with the measurements from other antenna systems, the voltage power spectral density measured by the Radio and Plasma waves receiver (RPW) on board Solar Orbiter needs to be converted into physical quantities that depend on the intrinsic properties of the radiation itself (e.g., the brightness of the source). Aims. The main goal of this study is to perform a calibration of the RPW dipole antenna system that allows for the conversion of the voltage power spectral density measured at the receiver's input into the incoming flux density. Methods. We used space observations from the Thermal Noise Receiver (TNR) and the High Frequency Receiver (HFR) to perform the calibration of the RPW dipole antenna system. Observations of type III bursts by the Wind spacecraft are used to obtain a reference radio flux density for cross-calibrating the RPW dipole antennas. The analysis of a large sample of HFR observations (over about ten months), carried out jointly with an analysis of TNR-HFR data and prior to the antennas' deployment, allowed us to estimate the reference system noise of the TNR-HFR receivers. Results. We obtained the effective length, l(eff), of the RPW dipoles and the reference system noise of TNR-HFR in space, where the antennas and pre-amplifiers are embedded in the solar wind plasma. The obtained l(eff) values are in agreement with the simulation and measurements performed on the ground. By investigating the radio flux intensities of 35 type III bursts simultaneously observed by Wind and Solar Orbiter, we found that while the scaling of the decay time as a function of the frequency is the same for the Waves and RPW instruments, their median values are higher for the former. This provides the first observational evidence that Type III radio waves still undergo density scattering, even when they propagate from the source, in a medium with a plasma frequency that is well below their own emission frequency.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view