SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baykal Yunus) srt2:(2021)"

Search: WFRF:(Baykal Yunus) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baykal, Yunus, et al. (author)
  • Detrital zircon U–Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain
  • 2021
  • In: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 274
  • Journal article (peer-reviewed)abstract
    • Loess deposits along the northern fringe of the European loess belt potentially record past changes in dust emission from areas proximal to former ice sheets. Recent chronologies from loess deposits across this region generally agree on greatly enhanced dust deposition rates when the Fennoscandian Ice Sheet reached its maximum extent during the late last glacial. However, uncertainties over the material's source and origin limit understanding of the causes of this enhanced dust activity. In particular, loess in southwestern Poland has been attributed to multiple origins, mainly involving glaciofluvial outwash plains along the Fennoscandian Ice Sheet margin and/or local sources in the mountainous areas of the Sudetes and Western Carpathians. Here we apply detrital zircon U–Pb age analyses for a large number of grains recovered from four loess samples taken from different stratigraphic units exposed at Biały Kościół in southwestern Poland, previously luminescence dated to MIS 4–2, to assess loess provenance as well as its temporal evolution during last glacial Fennoscandian Ice Sheet fluctuations. Furthermore, we analysed the detrital zircon U–Pb age spectra of five samples from potential source sediments to constrain the history of sediment recycling and mixing within the Northern European Plain prior to deflation and loess deposition. The broad range of zircon age components detected in the four loess samples suggests both Fennoscandian and closer Peri-Gondwanan proto-sources while a narrow, dominant Carboniferous age peak is consistent with sourcing from the local Strzelin Hills in the Sudetic foreland. However, the presence of both Fennoscandian and Peri-Gondwanan derived grains in samples from potential source sediments reveals that this mixture of sediment sources is widespread across the Northern European Plain, as a result of long-term glacial and fluvial reworking of cover sediments in the proglacial area throughout the Quaternary. Local rivers draining the Sudetic foreland transported this Fennoscandian-Peri-Gondwanan sediment mixture along with particles denuded from the Strzelin Hills, resulting in a nearby, temporally stable dust source for the Biały Kościół loess during MIS 4–2, while dust emission rates were substantially increased during the last glacial maximum. Given that our model for loess formation at Biały Kościół essentially involves sediment distribution via rivers prior to short distance aeolian transport, we infer that the proportion of northern ice sheet derived particles in European loess deposits is mainly controlled by the drainage pattern of major rivers in relation to Pleistocene ice margins where glaciofluvial sediment is abundant. Based on the presence of Fennoscandian derived zircon grains in European loess deposits, we constrain a southern limit of the influence of northern ice sheet dust sources along the central European highlands that currently divide drainage between the Northern European Plain and the Danube Basins.
  •  
2.
  • Potter, Stephan, et al. (author)
  • Disentangling Sedimentary Pathways for the Pleniglacial Lower Danube Loess Based on Geochemical Signatures
  • 2021
  • In: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 9
  • Journal article (peer-reviewed)abstract
    • The source of aeolian sediments such as loess has been investigated since decades. Reliable knowledge on potential dust sources is crucial to understand past climatic and environmental conditions accompanying the dispersal of early modern humans (EMH) into Europe. Provenance studies are usually performed on small sample sets and most established methods are expensive and time-consuming. Here, we present the results of high-resolution geochemical analyses performed on five loess-palaeosol sequences from the Lower Danube Basin (LDB), a region, despite its importance as a trajectory for EMH, largely underrepresented in loess provenance studies. We compare our results with geochemical data of loess-palaeosol sequences from Austria, Hungary, Serbia, and Ukraine. Based on published literature, we thus evaluate five plausible sedimentary pathways for the LDB loess: 1) the Danube alluvium (DA) pathway, which constrains the transport and re-deposition of detrital material by the Danube and its tributaries; 2) the Carpathian Bending (CB) pathway, where sediment is mainly transported from the Cretaceous to Neogene flysch of the Eastern Carpathian Bending; 3) the Eastern Carpathian (EC) pathway, in which sediment is eroded from the flysch of the Outer Eastern Carpathians, transported by rivers, and deflated by northwesterly to westerly winds; 4) the glaciofluvial (GF) pathway, where dust is deflated from glacial outwash plains in nowadays Ukraine, and 5) the Black Sea (BS) pathway, where dust originates from the exposed shelf of the Black Sea. Based on geochemical data, we consider the DA pathway to be the major sediment trajectory for loess in the LDB. Especially the sequences located close to the Danube and the Dobrogea show similarities to sites in Central and Northeast Hungary as well as Northern Serbia. For the northeastern part of the LDB, we demonstrate that dust input is mainly sourced from primary material from the Eastern Carpathians. Mineralogical estimations and geochemical data render the CB pathway as an additional substantial source of detrital material for the loess of this area. We consider the influence of the GF pathway in the LDB as negligible, whereas some minor influences of the BS pathway cannot be ruled out based on geochemical data.
  •  
3.
  • Stevens, Thomas, 1979-, et al. (author)
  • Detrital zircon U-Pb ages and source of the late Palaeocene Thanet Formation, Kent, SE England
  • 2021
  • In: Proceedings of the Geologists' Association. - : Elsevier BV. - 0016-7878. ; 132:2, s. 240-248
  • Journal article (peer-reviewed)abstract
    • The sources of the Paleocene London Basin marine to fluviodeltaic sandstones are currently unclear. High analysis number detrital zircon U-Pb age investigation of an early-mid Thanetian marine sand from East Kent, reveals a large spread of zircon age peaks indicative of a range of primary sources. In particular, a strong Ediacaran age peak is associated with the Cadomian Orogeny, while secondary peaks represent the Caledonian and various Mesoproterozoic to Archean orogenies. The near absence of grains indicative of the Variscan orogeny refutes a southerly or southwesterly source from Cornubia or Armorica, while the strong Cadomian peak points to Avalonian origin for a major component of the material. Furthermore, the relatively well expressed Mesoproterozoic to Archean age components most likely require significant additional Laurentian input. Comparison to published data shows that both Devonian Old Red Sandstone and northwesterly (Avalonia-Laurentia) derived Namurian-Westphalian Pennine Basin sandstones show strong similarities to the Thanetian sand. This pattern is consistent with derivation of Thanetian material via a SE draining proto-Thames River system that was initiated in the Paleocene due to uplift of western and northwestern Britain. This river system would have incised and eroded cover sandstones and potentially also Avalonian basement of mid to north Wales and England. However, the possibility of a contribution of Laurentian grains directly from the north via longshore drift cannot be excluded by the data, and the extent to which the sediment source signatures of Paleogene sands of the London Basin are variable both geographically and over time remains unclear.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view