SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bender M) srt2:(2010-2014)"

Search: WFRF:(Bender M) > (2010-2014)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cirasuolo, M., et al. (author)
  • MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT
  • 2014
  • In: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 1996-756X .- 0277-786X. ; 9147, s. 91470-91470
  • Conference paper (peer-reviewed)abstract
    • MOONS (the Multi-Object Optical and Near-infrared Spectrograph) has been selected by ESO as a third-generation instrument for the Very Large Telescope (VLT). The light grasp of the large collecting area offered by the VLT (8.2m diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8 -1.8 mu m) of MOONS will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of Galactic, extragalactic and cosmological studies, and it will provide crucial follow-up for major facilities such as Gaia, VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very first galaxies and reionization of the Universe at redshifts of z > 8-9, just a few million years after the Big Bang. From five years of observations MOONS will provide high-quality spectra for > 3M stars in our Galaxy and the Local Group, and for 1-2M galaxies at z > 1 (for an SDSS-like survey), promising to revolutionize our understanding of the Universe. The baseline design consists of similar to 1000 fibres, deployable over a field-of-view of similar to 500 arcmin(2), the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8 -1.8 mu m with two spectral resolving powers: in the medium-resolution mode (R similar to 4,000-6,000) the entire wavelength range is observed simultaneously, while the high-resolution mode will cover three selected sub-regions simultaneously: one region with R similar to 8,000 near the Ca II triplet to measure stellar radial velocities, and two regions at R similar to 20,000 (one in each of the J- and H-bands), for precision measurements of chemical abundances.
  •  
2.
  • Rodriguez, D., et al. (author)
  • MATS and LaSpec : High-precision experiments using ion traps and lasers at FAIR
  • 2010
  • In: The European physical journal. Special topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 183, s. 1-123
  • Research review (peer-reviewed)abstract
    • Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ""fingerprint"". Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.
  •  
3.
  • Bree, N, et al. (author)
  • Shape Coexistence in the Neutron-Deficient Even-Even Hg182-188 Isotopes Studied via Coulomb Excitation.
  • 2014
  • In: Physical Review Letters. - 1079-7114. ; 112:16
  • Journal article (peer-reviewed)abstract
    • Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.
  •  
4.
  • De Jong, R. S., et al. (author)
  • 4MOST - 4-metre multi-object spectroscopic telescope
  • 2012
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819491473 ; , s. 84460T-
  • Conference paper (peer-reviewed)abstract
    • The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R∼20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
  •  
5.
  • Cocolios, T. E., et al. (author)
  • Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:5, s. 052503-
  • Journal article (peer-reviewed)abstract
    • In-source resonant ionization laser spectroscopy of the even-A polonium isotopes Po-192-210,Po-216,Po-218 has been performed using the 6p(3)7s S-5(2) to (6)p(3)7p P-5(2) (lambda = 843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in Po200-210 with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.
  •  
6.
  • Schwan, D., et al. (author)
  • APEX-SZ: The Atacama Pathfinder EXperiment Sunyaev-Zel'dovich Instrument
  • 2012
  • In: The Messenger. ; 147, s. 7-12
  • Journal article (other academic/artistic)abstract
    • The APEX–SZ instrument was a millimetre-wave (150 GHz) cryogenic receiverfor the APEX telescope designedto observe galaxy clusters via theSunyaev–Zel’dovich Effect (SZE). Thereceiver contained a focal plane of280 superconducting transition-edgesensor bolometers equipped with afrequency-domain-multiplexed readoutsystem, and it played a key role in theintroduction of these new, robust, andscalable technologies. With 1-arcminuteresolution, the instrument had a higherinstantaneous sensitivity and covered alarger field of view (22 arcminutes) thanearlier generations of SZE instruments.During its period of operation from 2007to 2010, APEX–SZ was used to imageover 40 clusters and map fields overlappingwith external datasets. This paperbriefly describes the instrument anddata reduction procedure and presentsa cluster image gallery, as well as resultsfor the Bullet cluster, Abell 2204, Abell2163, and a power spectrum analysis inthe XMM-LSS field.
  •  
7.
  • Schwan, D., et al. (author)
  • Invited Article: Millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument
  • 2011
  • In: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 82:9
  • Journal article (peer-reviewed)abstract
    • The Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument is a millimeter-wave cryogenic receiver designed to observe galaxy clusters via the Sunyaev-Zel'dovich effect from the 12 m APEX telescope on the Atacama plateau in Chile. The receiver contains a focal plane of 280 superconducting transition-edge sensor (TES) bolometers instrumented with a frequency-domain multiplexed readout system. The bolometers are cooled to 280 mK via a three-stage helium sorption refrigerator and a mechanical pulse-tube cooler. Three warm mirrors, two 4 K lenses, and a horn array couple the TES bolometers to the telescope. APEX-SZ observes in a single frequency band at 150 GHz with 1' angular resolution and a 22' field-of-view, all well suited for cluster mapping. The APEX-SZ receiver has played a key role in the introduction of several new technologies including TES bolometers, the frequency-domain multiplexed readout, and the use of a pulse-tube cooler with bolometers. As a result of these new technologies, the instrument has a higher instantaneous sensitivity and covers a larger field-of-view than earlier generations of Sunyaev-Zel'dovich instruments. The TES bolometers have a median sensitivity of 890 mu K(CMB)root s (NEy of 3.5 x 10(-4) root s). We have also demonstrated upgraded detectors with improved sensitivity of 530 mu K(CMB) root s (NEy of 2.2 x 10(-4) root s). Since its commissioning in April 2007, APEX-SZ has been used to map 48 clusters. We describe the design of the receiver and its performance when installed on the APEX telescope.
  •  
8.
  • Basu, K., et al. (author)
  • Non-parametric modeling of the intra-cluster gas using APEX-SZ bolometer imaging data
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 519:Article Number: A29
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r(500) and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. Methods. We use publicly available X-ray spectroscopic-imaging data in the 0.7-2 keV energy band from the XMM-Newton observatory and our Sunyaev-Zel'dovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for a well-studied relaxed cluster, Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of recent Chandra observation is done with the latest calibration updates. We compare the results with that from an unrelaxed cluster, Abell 2163, to illustrate some differences between relaxed and merging systems. Results. Using the non-parametric modeling, we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure gas entropy profiles, both of which are done for the first time independently of X-ray spectroscopy using the SZE and X-ray imaging data. The gas entropy measurement in the central 100 kpc shows the usability of APEX-SZ data for inferring cluster dynamical states with this method. The contribution of the SZE systematic uncertainties in measuring T-e at large radii is shown to be small compared to XMM-Newton and Chandra systematic spectroscopic errors. The total mass profile obtained using the hydrostatic equilibrium assumption is in agreement with the published X-ray and weak lensing results; the upper limit on M-200 derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis.
  •  
9.
  • Melikechi, N., et al. (author)
  • Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra
  • 2014
  • In: Spectrochimica Acta Part B - Atomic Spectroscopy. - : Elsevier BV. - 0584-8547 .- 1873-3565. ; 96, s. 51-60
  • Journal article (peer-reviewed)abstract
    • As part of the Mars Science Laboratory, the ChemCam instrument acquires remote laser induced breakdown spectra at distances that vary between 1.56 m and 7 m. This variation in distance affects the intensities of the measured LIBS emission lines in non-trivial ways. To determine the behavior of a LIBS emission line with distance, it is necessary to separate the effects of many parameters such as laser energy, laser spot size, target homogeneity, and optical collection efficiency. These parameters may be controlled in a laboratory on Earth but for field applications or in space this is a challenge. In this paper, we show that carefully selected ChemCam LIBS emission lines acquired from the Martian dust can be used to build an internal proxy spectroscopic standard. This in turn, allows for a direct measurement of the effects of the distance of various LIBS emission lines and hence can be used to correct ChemCam LIBS spectra for distance variations. When tested on pre-launch LIBS calibration data acquired under Martian-like conditions and with controlled and well-calibrated targets, this approach yields much improved agreement between targets observed at various distances. This work lays the foundation for future implementation of automated routines to correct ChemCam spectra for differences caused by variable distance.
  •  
10.
  • Smoller, JW, et al. (author)
  • Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis.
  • 2013
  • In: Lancet. - 1474-547X. ; 381:9875, s. 1371-9
  • Journal article (peer-reviewed)abstract
    • Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20
Type of publication
journal article (17)
conference paper (2)
research review (1)
Type of content
peer-reviewed (19)
other academic/artistic (1)
Author/Editor
Bender, M. (4)
Dobbs, M. (3)
Kennedy, J. (3)
Horellou, Cathy, 196 ... (3)
Pacaud, F. (3)
Kneissl, R. (3)
show more...
Huyse, M. (3)
Van Duppen, P. (3)
Bertoldi, F. (3)
Bender, R. (3)
Basu, K. (3)
Johansson, Daniel, 1 ... (3)
Lanting, T. (3)
Mehl, J. (3)
Schwan, D. (3)
Westbrook, B. (3)
Heenen, P-H (3)
Spieler, H. (2)
Bonifacio, P. (2)
Johnson, B. (2)
Ade, P., (2)
Tucker, C. (2)
Plagge, T (2)
Lunney, D. (2)
Weiss, A. (2)
Sun, D (2)
Menten, K.M. (2)
Cocolios, T. E. (2)
Page, R. D. (2)
Royer, F. (2)
Bender, Frida A.-M. (2)
Sommer, M. W. (2)
Bender, A. N. (2)
Halverson, N. W. (2)
Holzapfel, W. L. (2)
Lee, A. T. (2)
Reichardt, C. L. (2)
Richards, P. L. (2)
Clarke, John, 1942 (2)
Ferrusca, D. (2)
Muders, D. (2)
Schaaf, R. (2)
Bastin, B (2)
García-Ramos, J E (2)
Van de Walle, J (2)
Schilke, P. (2)
Nandra, K. (2)
Muschielok, B. (2)
Navarro, R. (2)
Flanagan, K. T. (2)
show less...
University
Stockholm University (6)
Uppsala University (4)
Chalmers University of Technology (4)
Lund University (3)
Karolinska Institutet (3)
Royal Institute of Technology (2)
show more...
University of Gothenburg (1)
Umeå University (1)
Luleå University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (20)
Research subject (UKÄ/SCB)
Natural sciences (11)
Medical and Health Sciences (4)
Engineering and Technology (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view