SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bergenstråhle Wohlert Malin) srt2:(2010)"

Search: WFRF:(Bergenstråhle Wohlert Malin) > (2010)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beckham, Gregg T., et al. (author)
  • The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered Protein
  • 2010
  • In: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 99:11, s. 3773-3781
  • Journal article (peer-reviewed)abstract
    • Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose Cellulose degrading enzymes (cellulases) are often modular with catalytic domains for cellulose hydrolysis and carbohydrate binding modules connected by linkers rich in serine and threonine with O-glycosylation Few studies have probed the role that the linker and O-glycans play in catalysis Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity the structure function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms Here the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation Contrary to the predominant view the O-glycosylation does not change the stiffness of the linker as measured by the relative fluctuations in the end to end distance rather it provides a 16 A extension thus expanding the operating range of Cel7A We explain observations from previous biochemical experiments in the light of results obtained here and compare the Cel7A linker with linkers from other cellulases with sequence based tools to predict disorder This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T reesei may not be as disordered warranting further study
  •  
2.
  • Bergenstråhle, Malin, 1977-, et al. (author)
  • Simulation studies of the insolubility of cellulose
  • 2010
  • In: Carbohydrate Research. - : Elsevier BV. - 0008-6215 .- 1873-426X. ; 345:14, s. 2060-2066
  • Journal article (peer-reviewed)abstract
    • Molecular dynamics simulations have been used to calculate the potentials of mean force for separating short cellooligomers in aqueous solution as a means of estimating the contributions of hydrophobic stacking and hydrogen bonding to the insolubility of crystalline cellulose. A series of four potential of mean force (pmf) calculations for glucose, cellobiose, cellotriose, and cellotetraose in aqueous solution were performed for situations in which the molecules were initially placed with their hydrophobic faces stacked against one another, and another for the cases where the molecules were initially placed adjacent to one another in a co-planar, hydrogen-bonded arrangement, as they would be in cellulose ID. From these calculations, it was found that hydrophobic association does indeed favor a crystal-like structure over solution, as might be expected. Somewhat more surprisingly, hydrogen bonding also favored the crystal packing, possibly in part because of the high entropic cost for hydrating glucose hydroxyl groups, which significantly restricts the configurational freedom of the hydrogen-bonded waters. The crystal was also favored by the observation that there was no increase in chain configurational entropy upon dissolution, because the free chain adopts only one conformation, as previously observed, but against intuitive expectations, apparently due to the persistence of the intramolecular O3-O5 hydrogen bond.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view