SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertaina M) srt2:(2020-2023)"

Sökning: WFRF:(Bertaina M) > (2020-2023)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marcelli, L., et al. (författare)
  • Integration, qualification, and launch of the Mini-EUSO telescope on board the ISS
  • 2023
  • Ingår i: Rendiconti Lincei SCIENZE FISICHE E NATURALI. - : Springer Nature. - 2037-4631 .- 1720-0776. ; 34:1, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is a high-sensitivity imaging telescope that observes the Earth from the ISS in the near ultraviolet band (290÷ 430 nm), through the nadir-facing, UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019, has a field of view of 44∘, a spatial resolution on the Earth’s surface of 6.3 km and a temporal sampling rate of 2.5 microseconds. Thanks to its triggering and on-board processing, the telescope is capable of detecting UV emissions of cosmic, atmospheric, and terrestrial origin on different time scales, from a few microseconds up to tens of milliseconds. The optics is composed of two Fresnel lenses focusing light onto an array of 36 Hamamatsu Multi-Anode PhotoMultiplier Tubes, for a total of 2304 pixels. The telescope also contains two cameras in the near-infrared and visible, an 8-by-8 array of Silicon-PhotoMultipliers and a series of UV sensors to manage night-day transitions. The scientific objectives range from the observation of atmospheric phenomena [lightning, Transient Luminous Events (TLEs), ELVES], the study of meteoroids, the search of interstellar meteoroids and strange quark matter, mapping of the Earth’s nocturnal emissions in the ultraviolet range, and the search of cosmic rays with energy above 1021 eV. The instrument has been integrated and qualified in 2019, with the final tests in Baikonur prior to its launch. Operations involve periodic installation in the Zvezda module of the station with observations during the crew night time, with periodic downlink of data samples, with the full data being sent to the ground via pouches containing the data disks. Mission planning involves the selection of the optimal orbits to maximize the scientific return of the instrument. In this work, we will describe the various phases of construction, testing, and qualification prior to the launch and the in-flight operations of the instrument on board the ISS.
  •  
2.
  • Barrillon, P., et al. (författare)
  • The EUSO@TurLab project in the framework of the JEM-EUSO program
  • 2023
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 55:2, s. 569-602
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All the experiments are designed and performed based on simulations of the expected response of the detectors to be flown in space. In April 2016 the TUS detector and more recently in October 2019 the Mini-EUSO experiment, both part of the JEM-EUSO program, have been placed in orbit to map the UV Earth emissions. It is, therefore, now possible to compare the replicas performed at TurLab with the actual images detected in space to understand the level of fidelity in terms of reproduction of the expected signals. We show that the laboratory tests reproduce at the order of magnitude level the measurements from space in terms of spatial extension and time duration of the emitted UV light, as well as the intensity in terms of expected counts per pixel per unit time when atmospheric transient events, diffuse nightlow background light, and artificial light sources are considered. Therefore, TurLab is found to be a very useful facility for testing the acquisition logic of the detectors of the present and future missions of the JEM-EUSO program and beyond in order to reproduce atmospheric signals in the laboratory. 
  •  
3.
  • Bisconti, F., et al. (författare)
  • Pre-flight qualification tests of the Mini-EUSO telescope engineering model
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 53:1, s. 133-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is part of the JEM-EUSO program and operates on board the International Space Station (ISS). It is a UV-telescope with single-photon counting capability looking at nighttime downwards to the Earth through a nadir-facing UV-transparent window. As part of the pre-flight tests, the Mini-EUSO engineering model, a telescope with 1/9 of the original focal surface and a lens of 2.5 cm diameter, has been built and tested. Tests of the Mini-EUSO engineering model have been made in laboratory and in open-sky conditions. Laboratory tests have been performed at the TurLab facility, located at the Physics Department of the University of Turin, equipped with a rotating tank containing different types of materials and light sources. In this way, the configuration for the observation of the Earth from space was emulated, including the Mini-EUSO trigger schemes. In addition to the qualification and calibration tests, the Mini-EUSO engineering model has also been used to evaluate the possibility of using a JEM-EUSO-type detector for applications such as observation of space debris. Furthermore, observations in open-sky conditions allowed the studies of natural light sources such as stars, meteors, planets, and artificial light sources such as airplanes, satellites reflecting the sunlight, and city lights. Most of these targets could be detected also with Mini-EUSO. In this paper, the tests in laboratory and in open-sky conditions are reported, as well as the obtained results. In addition, the contribution that such tests provided to foresee and improve the performance of Mini-EUSO on board the ISS is discussed.
  •  
4.
  •  
5.
  • Willasch, AM, et al. (författare)
  • Myeloablative conditioning for allo-HSCT in pediatric ALL: FTBI or chemotherapy?-A multicenter EBMT-PDWP study
  • 2020
  • Ingår i: Bone marrow transplantation. - : Springer Science and Business Media LLC. - 1476-5365 .- 0268-3369. ; 55:98, s. 1540-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • Although most children with acute lymphoblastic leukemia (ALL) receive fractionated total body irradiation (FTBI) as myeloablative conditioning (MAC) for allogeneic hematopoietic stem cell transplantation (allo-HSCT), it is an important matter of debate if chemotherapy can effectively replace FTBI. To compare outcomes after FTBI versus chemotherapy-based conditioning (CC), we performed a retrospective EBMT registry study. Children aged 2–18 years after MAC for first allo-HSCT of bone marrow (BM) or peripheral blood stem cells (PBSC) from matched-related (MRD) or unrelated donors (UD) in first (CR1) or second remission (CR2) between 2000 and 2012 were included. Propensity score weighting was used to control pretreatment imbalances of the observed variables. 3.054 patients were analyzed. CR1 (1.498): median follow-up (FU) after FTBI (1.285) and CC (213) was 6.8 and 6.1 years. Survivals were not significantly different. CR2 (1.556): median FU after FTBI (1.345) and CC (211) was 6.2 years. Outcomes after FTBI were superior as compared with CC with regard to overall survival (OS), leukemia-free survival (LFS), relapse incidence (RI), and nonrelapse mortality (NRM). However, we must emphasize the preliminary character of the results of this retrospective “real-world-practice” study. These findings will be prospectively assessed in the ALL SCTped 2012 FORUM trial.
  •  
6.
  • Marcelli, L., et al. (författare)
  • The Mini-EUSO telescope on board the ISS: in-flight operations and performances
  • 2022
  • Ingår i: Proceedings International Conference on Technology and Instrumentation in Particle Physics, TIPP 2021. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a high sensitivity imaging telescope that observes the Earth from the ISS in the ultraviolet band (2904÷430 nm), through the UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019 as part of the ESA mission Beyond, has a field of view of 44°, a spatial resolution on the Earth surface of 6.3 km and a temporal resolution of 2.5 microseconds. The telescope detects UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few microseconds upwards. Mini-EUSO main detector optics is composed of two Fresnel lenses focusing light onto an array of 36 Hamamatsu multi-anode photomultiplier tubes, for a total of 2304 pixels. The telescope also contains: two ancillary cameras to complement measurements in the near infrared and visible ranges, an array of Silicon-PhotoMultipliers and UV sensors to manage night-day transitions. In this work we will describe the in-flight operations and performances of the various instruments in the first months after launch.
  •  
7.
  •  
8.
  • Abe, S., et al. (författare)
  • Developments and results in the context of the JEM-EUSO program obtained with the ESAF simulation and analysis framework
  • 2023
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 83:11
  • Tidskriftsartikel (refereegranskat)abstract
    • JEM-EUSO is an international program for the development of space-based Ultra-High Energy Cosmic Ray observatories. The program consists of a series of missions which are either under development or in the data analysis phase. All instruments are based on a wide-field-of-view telescope, which operates in the near-UV range, designed to detect the fluorescence light emitted by extensive air showers in the atmosphere. We describe the simulation software ESAF in the framework of the JEM-EUSO program and explain the physical assumptions used. We present here the implementation of the JEM-EUSO, POEMMA, K-EUSO, TUS, Mini-EUSO, EUSO-SPB1 and EUSO-TA configurations in ESAF. For the first time ESAF simulation outputs are compared with experimental data.
  •  
9.
  • Adams, J. H., Jr., et al. (författare)
  • A Review of the EUSO-Balloon Pathfinder for the JEM-EUSO Program
  • 2022
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 218:1
  • Forskningsöversikt (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks "from above." On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. After reaching a floating altitude of 38 km, EUSO-Balloon imaged the UV light in the wavelength range similar to 290-500 nm for more than 5 hours using the key technologies of JEM-EUSO. The flight allowed a good understanding of the performance of the detector to be developed, giving insights into possible improvements to be applied to future missions. A detailed measurement of the photoelectron counts in different atmospheric and ground conditions was achieved. By means of the simulation of the instrument response and by assuming atmospheric models, the absolute intensity of diffuse light was estimated. The instrument detected hundreds of laser tracks with similar characteristics to EASs shot by a helicopter flying underneath. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. The reconstruction of the direction of the laser tracks was performed. In this work, a review of the main results obtained by EUSO-Balloon is presented as well as implications for future space-based observations of UHECRs.
  •  
10.
  • Bertaina, M., et al. (författare)
  • The Mini-EUSO telescope on board the International Space Station: first results in view of UHECR measurements from space
  • 2023
  • Ingår i: 27th European Cosmic Ray Symposium, ECRS 2022. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station and viewing our planet from a nadir-facing UV-transparent window in the Zvezda module. The instrument is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, with single photon counting sensitivity and an overall field of view of 44◦. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, and the observation of sea bioluminescence. Mini-EUSO can map the night-time Earth in the near UV range (predominantly between 290 – 430 nm), with a spatial resolution of about 6.3 km and different temporal resolutions of 2.5 μs, 320 μs and 41 ms. Mini-EUSO observations are extremely important to assess the potential of a space-based detector of Ultra-High Energy Cosmic Rays (UHECRs) such as K-EUSO and POEMMA. In this contribution we describe the detector and show preliminary results in the context of UHECR observations from space. In particular, it is shown that the typical UV nightglow background level is comparable to what was originally estimated for a space-based detector looking down to Earth. The adaptive trigger logic successfully keeps the spurious trigger rate at the designed level of ∼1 Hz in nominal conditions and in presence of quasi-static bright sources such as city lights. The logic triggers on UV transients in the μs time scale due to anthropogenic light sources, such as flashers. These signals can clearly be distinguished from Extensive Air Shower (EAS) events by comparing them with simulated EASs. In addition, they demonstrate the capability of a large space-based detector such as K-EUSO or POEMMA to detect UHECRs above a few times 1019 eV. The presence of clouds can be clearly recognized by the UV camera in many situations, which is helpful for the calculation of the exposure and for the determination of the atmospheric conditions in case of detection of an EAS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy