SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Blecic Jasmina) "

Search: WFRF:(Blecic Jasmina)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bell, Taylor, et al. (author)
  • Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
  • 2024
  • In: Nature Astronomy. - 2397-3366. ; 8:7, s. 879-898
  • Journal article (peer-reviewed)abstract
    • Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.
  •  
2.
  • Carter, Aarynn L., et al. (author)
  • A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b
  • 2024
  • In: Nature Astronomy. - 2397-3366. ; In Press
  • Journal article (peer-reviewed)abstract
    • A combined analysis of datasets across four JWST instrument modes provides a benchmark transmission spectrum for the Saturn-mass WASP-39 b. The broad wavelength range and high resolution constrain orbital and stellar parameters to below 1%.
  •  
3.
  • Esparza-Borges, E., et al. (author)
  • Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-correlation Techniques to JWST NIRSpec G395H Data
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 955:1
  • Journal article (peer-reviewed)abstract
    • Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher-resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μm, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet’s atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6σ when using a template with only 12C16O lines. The CCF significance of the CO signal increases to 7.5σ when including in the template lines from additional CO isotopologues, with the largest contribution being from 13C16O. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues.
  •  
4.
  • Flagg, Laura, et al. (author)
  • Debris Disks Can Contaminate Mid-infrared Exoplanet Spectra: Evidence for a Circumstellar Debris Disk around Exoplanet Host WASP-39
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 969:1
  • Journal article (peer-reviewed)abstract
    • The signal from a transiting planet can be diluted by astrophysical contamination. In the case of circumstellar debris disks, this contamination could start in the mid-infrared and vary as a function of wavelength, which would then change the observed transmission spectrum for any planet in the system. The MIRI/Low Resolution Spectrometer WASP-39b transmission spectrum shows an unexplained dip starting at ∼10 μm that could be caused by astrophysical contamination. The spectral energy distribution displays excess flux at similar levels to that which are needed to create the dip in the transmission spectrum. In this Letter, we show that this dip is consistent with the presence of a bright circumstellar debris disk, at a distance of >2 au. We discuss how a circumstellar debris disk like that could affect the atmosphere of WASP-39b. We also show that even faint debris disks can be a source of contamination in MIRI exoplanet spectra.
  •  
5.
  • Hammond, Mark, et al. (author)
  • Two-dimensional Eclipse Mapping of the Hot-Jupiter WASP-43b with JWST MIRI/LRS
  • 2024
  • In: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 168:1
  • Journal article (peer-reviewed)abstract
    • We present eclipse maps of the two-dimensional thermal emission from the dayside of the hot-Jupiter WASP-43b, derived from an observation of a phase curve with the JWST MIRI/LRS instrument. The observed eclipse shapes deviate significantly from those expected for a planet emitting uniformly over its surface. We fit a map to this deviation, constructed from spherical harmonics up to order ℓ max = 2 , alongside the planetary, orbital, stellar, and systematic parameters. This yields a map with a meridionally averaged eastward hot-spot shift of (7.75 ± 0.36)°, with no significant degeneracy between the map and the additional parameters. We show the latitudinal and longitudinal contributions of the dayside emission structure to the eclipse shape, finding a latitudinal signal of ∼200 ppm and a longitudinal signal of ∼250 ppm. To investigate the sensitivity of the map to the method, we fix the parameters not used for mapping and derive an “eigenmap” fitted with an optimized number of orthogonal phase curves, which yields a similar map to the ℓ max = 2 map. We also fit a map up to ℓ max = 3 , which shows a smaller hot-spot shift, with a larger uncertainty. These maps are similar to those produced by atmospheric simulations. We conclude that there is a significant mapping signal which constrains the spherical harmonic components of our model up to ℓ max = 2 . Alternative mapping models may derive different structures with smaller-scale features; we suggest that further observations of WASP-43b and other planets will drive the development of more robust methods and more accurate maps.
  •  
6.
  • Powell, Diana, et al. (author)
  • Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 626:8001, s. 979-983
  • Journal article (peer-reviewed)abstract
    • The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5–25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view