SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bogomolov S. L.) srt2:(2015-2019)"

Search: WFRF:(Bogomolov S. L.) > (2015-2019)

  • Result 1-10 of 58
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Grigorenko, L, et al. (author)
  • Scientific program of DERICA-prospective accelerator and storage ring facility for radioactive ion beam research
  • 2019
  • In: Physics-Uspekhi. - 1468-4780 .- 1063-7869. ; 62:7, s. 675-690
  • Journal article (peer-reviewed)abstract
    • Studies of radioactive ions (RIs) are the most thriving field of low-energy nuclear physics. In this paper, the concept and the scientific agenda of the prospective accelerator and storage ring facility for RI beam (RIB) research are proposed for a large-scale international project based at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research. The motivation for the new facility is discussed and its characteristics are briefly presented and shown to be comparable to those of advanced world centers, the so-called "RIB factories". In the project, the emphasis is made on studies with short-lived RIBs in storage rings. A unique feature of the project is the possibility of studying electron-RI interactions in a collider experiment to determine the fundamental properties of nuclear matter, in particular, electromagnetic form factors of exotic nuclei.
  •  
2.
  • Topchiev, N. P., et al. (author)
  • GAMMA-400 gamma-ray observatory
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons+ positrons.Precision investigations of gamma-ray emission fromGalactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well asdiffuse gamma-rayemission,along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will studygamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ∼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1° to ∼0.01° and energy resolution from 3% to ∼1%; the proton rejection factor is ∼5x105. GAMMA-400 will be installed onboardthe Russian space observatory.
  •  
3.
  • Topchiev, N. P., et al. (author)
  • The GAMMA-400 experiment : Status and prospects
  • 2015
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 79:3, s. 417-420
  • Journal article (peer-reviewed)abstract
    • The development of the GAMMA-400 γ-ray telescope continues. The GAMMA-400 is designed to measure fluxes of γ-rays and the electron-positron cosmic-ray component possibly associated with annihilation or decay of dark matter particles; and to search for and study in detail discrete γ-ray sources, to measure the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-rays from the active Sun. The energy range for measuring γ-rays and electrons (positrons) is from 100 MeV to 3000 GeV. For 100-GeV γ-rays, the γ-ray telescope has an angular resolution of ∼0.01°, an energy resolution of ∼1%, and a proton rejection factor of ∼5 × 105. The GAMMA-400 will be installed onboard the Russian Space Observatory.
  •  
4.
  • Leonov, A. A., et al. (author)
  • Separation of electrons and protons in the GAMMA-400 gamma-ray telescope
  • 2015
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 56:7, s. 1538-1545
  • Journal article (peer-reviewed)abstract
    • The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is similar to 10(-3) at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of similar to 4 x 10(5) for vertical incident particles and similar to 3 x 10(5) for particles with initial inclination of 30 degrees in the electron energy range from 50 GeV to 1 TeV. (C) 2015 COSPAR.
  •  
5.
  • Munini, R., et al. (author)
  • Short-term variation in the galactic cosmic ray intensity measured with the PAMELA experiment
  • 2017
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • New results on the galactic cosmic ray (GCR) short-term intensity variation associated with Forbush decrease and co-rotating interaction regions (CIRs) measured by the PAMELA instrument between November 2006 and March 2007 are presented. Most of the past measurements on Forbush decrease events were carried out with neutron monitor detector. This tecnique allows only indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease associated with the December 13th coronal mass ejection (CME) was studied in a wide rigidity range (0.4 - 20 GV) and for different species of GCRs detected directly in space. Using GCR protons, the amplitude and the recovery time of the Forbush decrease were studied for ten rigidity interval with a temporal resolution of one day. For comparison the helium and the electron intensity over time were also studied. The temporal evolution of the helium and proton intensity was found in good agreement while the electrons show, on average, a faster recovery time. This was interpreted as a charge-sign dependence introduced by drift motion experienced by the low rigidity (< 5 GV) GCRs during their propagation through the heliosphere. Moreover a clear 13.5 days cyclical variation was observed in the GCR proton intensity after the Forbush decrease. This phenomena could be interpreted as an effect of prominent structures of compressed plasma in the solar wind, i.e. CIRs, or to the latitudinal gradient due to the crossing of the heliospheric current sheet (HCS). 
  •  
6.
  • Munini, R., et al. (author)
  • Ten years of positron and electron solar modulation measured by the PAMELA experiment
  • 2017
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The satellite-borne PAMELA experiment was launched on the 15th June 2006 from the Baikonur cosmodrome. Till January 2016 PAMELA has detected the charged component of cosmic-rays (CRs) over a wide energy range. Due to its long flight duration PAMELA represents an ideal detector for cosmic-ray solar modulation studies. Moreover, the capability to measure particles of the same mass with opposite charge allows to investigate the charge-sign dependent solar modulation. The results on the positron and electron intensity variation at Earth over the 23rd solar minimum (July 2006 - January 2009) till the middle of the 24rd solar maximum (December 2015), will be presented. The positron to electron ratio shows a clear time variation interpreted as solar modulation sign-charge dependence introduced by particle drifts. The effect of the polarity reversal of the heliospheric magnetic field, which took place between 2013 and 2014, is also distinctly visible from the PAMELA data. These results provide the first clear indication of how drift effects unfold with time during different phases of the solar activity and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field. 
  •  
7.
  • Adriani, O., et al. (author)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
8.
  • Adriani, O., et al. (author)
  • Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015
  • 2016
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 116:24
  • Journal article (peer-reviewed)abstract
    • Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.
  •  
9.
  • Bruno, A., et al. (author)
  • Geomagnetically trapped, albedo and solar energetic particles : Trajectory analysis and flux reconstruction with PAMELA
  • 2017
  • In: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 60:4, s. 788-795
  • Journal article (peer-reviewed)abstract
    • The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.
  •  
10.
  • Bruno, A., et al. (author)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • In: Proceedings of Science. - : Proceedings of science.
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view