SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bohn Alexander J.) "

Search: WFRF:(Bohn Alexander J.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Janson, Markus, et al. (author)
  • The B-Star Exoplanet Abundance Study : a co-moving 16-25 M-Jup companion to the young binary system HIP 79098
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Journal article (peer-reviewed)abstract
    • Wide low-mass substellar companions are known to be very rare among low-mass stars, but appear to become increasingly common with increasing stellar mass. However, B-type stars, which are the most massive stars within similar to 150 pc of the Sun, have not yet been examined to the same extent as AFGKM-type stars in that regard. In order to address this issue, we launched the ongoing B-star Exoplanet Abundance Study (BEAST) to examine the frequency and properties of planets, brown dwarfs, and disks around B-type stars in the Scorpius-Centaurus (Sco-Cen) association; we also analyzed archival data of B-type stars in Sco-Cen. During this process, we identified a candidate substellar companion to the B9-type spectroscopic binary HIP 79098 AB, which we refer to as HIP 79098 (AB)b. The candidate had been previously reported in the literature, but was classified as a background contaminant on the basis of its peculiar colors. Here we demonstrate that the colors of HIP 79098 (AB)b are consistent with several recently discovered young and low-mass brown dwarfs, including other companions to stars in Sco-Cen. Furthermore, we show unambiguous common proper motion over a 15-yr baseline, robustly identifying HIP 79098 (AB)b as a bona fide substellar circumbinary companion at a 345 +/- 6 AU projected separation to the B9-type stellar pair. With a model-dependent mass of 16-25 M-Jup yielding a mass ratio of <1%, HIP 79098 (AB)b joins a growing number of substellar companions with planet-like mass ratios around massive stars. Our observations underline the importance of common proper motion analysis in the identification of physical companionship, and imply that additional companions could potentially remain hidden in the archives of purely photometric surveys.
  •  
3.
  • Zhang, Yapeng, et al. (author)
  • The 13CO-rich atmosphere of a young accreting super-Jupiter
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 595:7867, s. 370-372
  • Journal article (peer-reviewed)abstract
    • Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4–6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet’s atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of 31−10+17(90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view