SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bonetti Stefano) srt2:(2020-2024)"

Search: WFRF:(Bonetti Stefano) > (2020-2024)

  • Result 1-10 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhou Hagström, Nanna, 1993-, et al. (author)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • In: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Journal article (peer-reviewed)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
2.
  • Alber, Lukas, et al. (author)
  • NTMpy : An open source package for solving coupled parabolic differential equations in the framework of the three-temperature model
  • 2021
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655 .- 1879-2944. ; 265
  • Journal article (peer-reviewed)abstract
    • The NTMpy code package allows for simulating the one-dimensional thermal response of multilayer samples after optical excitation, as in a typical pump-probe experiment. Several Python routines are combined and optimized to solve coupled heat diffusion equations in one dimension, on arbitrary piecewise homogeneous material stacks, in the framework of the so-called three-temperature model. The energy source deposited in the material is modelled as a light pulse of arbitrary cross-section and temporal profile. A transfer matrix method enables the calculation of realistic light absorption in presence of scattering interfaces as in multilayer samples. The open source code is fully object-oriented to enable a user-friendly and intuitive interface for adjusting the physically relevant input parameters. Here, we describe the mathematical background of the code, we lay out the workflow, and we validate the functionality of our package by comparing it to commercial software, as well as to experimental transient reflectivity data recorded in a pump-probe experiment with femtosecond light pulses.
  •  
3.
  • Artesani, Alessia, et al. (author)
  • Self-Referenced Method for Geometrical Distortion Removal in THz Time-Domain Reflection Imaging
  • 2023
  • In: IEEE Transactions on Terahertz Science and Technology. - 2156-342X .- 2156-3446. ; 13:2, s. 113-121
  • Journal article (peer-reviewed)abstract
    • In this article, we develop a method for removing the phase drift induced by physically distorted object in terahertz time-domain reflection imaging (THz-TDRI). The proposed approach is defined as self-referenced, as it does not rely on any numerical parameter optimization nor extra instrumental components, and it is based on the unique manipulation of time-domain imaging data. In fact, we demonstrate that the problem can be solved assuming a linear contribution of the temporal shift induced by surface curvature. We illustrate how the self-referenced method is modeled and implemented, and we report the results obtained on two objects with different characteristics: a tilted and highly reflective surface, and a warped and heterogeneous surface. The proposed method demonstrates how to successfully remove the phase alterations induced on the reflected electric field, and how to repair the heavily corrupted images in the frequency-domain.
  •  
4.
  • Artesani, Alessia, et al. (author)
  • Terahertz Time-Domain Spectroscopy in Reflection Configuration for Inorganic and Mineral Pigment Identification
  • 2023
  • In: Applied Spectroscopy. - : SAGE Publications. - 0003-7028 .- 1943-3530. ; 77:1, s. 74-87
  • Journal article (peer-reviewed)abstract
    • This work demonstrates terahertz time-domain spectroscopy (THz-TDS) in reflection configuration on a class of inorganic and mineral pigments. The technique is validated for pictorial materials against the limitations imposed by the back-reflection of the THz signal, such as weak signal intensity, multiple signal losses and distortion, as well as the current scarce databases. This work provides a detailed description of the experimental procedure and method used for the determination of material absorption coefficient of a group of 10 pigments known to be used in ancient frescoes, that are, Cu-based (azurite, malachite, and Egyptian blue), Pb-based (minium and massicot), Fe-based (iron oxide yellow, dark ochre, hematite, and Pompeii red) pigments and mercury sulfide (cinnabar), and classified the vibrational modes of the molecular oxides and sulfides for material identification. The results of this work showed that the mild signal in reflection configuration does not limit the application of THz-TDS on inorganic and mineral pigments as long as (i) the THz signal is normalized with a highly reflective reference sample, (ii) the secondary reflected signals from inner interfaces are removed with a filtering procedure, and (iii) the limitations at high frequencies imposed by the dynamic range of the instrument are considered. Under these assumptions, we were able to differentiate molecular phases of the same metal and identify azurite, Egyptian blue, minium, and cinnabar, isolating the molecular vibrations up to 125 cm−1. The established approach demonstrated to be reliable, and it can be extended for the study of other materials, well beyond the reach of the heritage domain. 
  •  
5.
  • Basini, Martina, et al. (author)
  • Terahertz electric-field-driven dynamical multiferroicity in SrTiO3
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687.
  • Journal article (peer-reviewed)abstract
    • The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention1,2,3,4,5,6. The theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization due to time-dependent electric polarization in non-ferromagnetic materials7,8. In simple terms, the coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. Here we provide experimental evidence of room-temperature magnetization in the archetypal paraelectric perovskite SrTiO3 due to this mechanism. We resonantly drive the infrared-active soft phonon mode with an intense circularly polarized terahertz electric field and detect the time-resolved magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab initio calculations using self-consistent phonon theory at a finite temperature9, reproduces qualitatively our experimental observations. A quantitatively correct magnitude was obtained for the effect by also considering the phonon analogue of the reciprocal of the Einstein–de Haas effect, which is also called the Barnett effect, in which the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for the control of magnetism, for example, for ultrafast magnetic switches, by coherently controlling the lattice vibrations with light.
  •  
6.
  • Basini, Martina, 1985-, et al. (author)
  • Terahertz ionic Kerr effect : Two-phonon contribution to the nonlinear optical response in insulators
  • 2024
  • In: Physical Review B. - 2469-9950 .- 2469-9969. ; 109:2
  • Journal article (peer-reviewed)abstract
    • The THz Kerr effect measures the birefringence induced in an otherwise isotropic material by a strong THz pulse driving the Raman-active excitations of the systems. Here we provide experimental evidence of a sizable Kerr response in insulating SrTiO3 due to infrared-active lattice vibrations. Such a signal, named the ionic Kerr effect, is associated with the simultaneous excitation of multiple phonons. Thanks to a theoretical modeling of the time, polarization, and temperature dependence of the birefrengence, we can disentangle the ionic Kerr effect from the off-resonant electronic excitations, providing an alternative tunable mechanism to modulate the refractive index on ultrashort timescales via infrared active phonons.
  •  
7.
  • Bossini, D., et al. (author)
  • Ultrafast Amplification and Nonlinear Magnetoelastic Coupling of Coherent Magnon Modes in an Antiferromagnet
  • 2021
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:7
  • Journal article (peer-reviewed)abstract
    • We investigate the role of domain walls in the ultrafast magnon dynamics of an antiferromagnetic NiO single crystal in a pump-probe experiment with variable pump photon energy. Analyzing the amplitude of the energy-dependent photoinduced ultrafast spin dynamics, we detect a yet unreported coupling between the material's characteristic terahertz- and gigahertz-magnon modes. We explain this unexpected coupling between two orthogonal eigenstates of the corresponding Hamiltonian by modeling the magnetoelastic interaction between spins in different domains. We find that such interaction, in the nonlinear regime, couples the two different magnon modes via the domain walls and it can be optically exploited via the exciton-magnon resonance.
  •  
8.
  • Brondin, Carlo Alberto, et al. (author)
  • Tailoring Magnetic Anisotropy in Ultrathin Cobalt by Surface Carbon Chemistry
  • 2024
  • In: Advanced Electronic Materials. - 2199-160X. ; 10:4
  • Journal article (peer-reviewed)abstract
    • The ability to manipulate magnetic anisotropy is essential for magnetic sensing and storage tools. Surface carbon species offer cost-effective alternatives to metal-oxide and noble metal capping layers, inducing perpendicular magnetic anisotropy in ultrathin ferromagnetic films. Here, the different mechanisms by which the magnetism in a few-layer-thick Co thin film is modified upon adsorption of carbon monoxide (CO), dispersed carbon, and graphene are elucidated. Using X-ray microscopy with chemical and magnetic sensitivity, the in-plane to out-of-plane spin reorientation transition in cobalt is monitored during the accumulation of surface carbon up to the formation of graphene. Complementary magneto-optical measurements show weak perpendicular magnetic anisotropy (PMA) at room temperature for dispersed carbon on Co, while graphene-covered cobalt exhibits a significant out-of-plane coercive field. Density-functional theory (DFT) calculations show that going from CO/Co to C/Co and to graphene/Co, the magnetocrystalline and magnetostatic anisotropies combined promote out-of-plane magnetization. Anisotropy energies weakly depend on carbidic species coverage. Instead, the evolution of the carbon chemical state from carbidic to graphitic is accompanied by an exponential increase in the characteristic domain size, controlled by the magnetic anisotropy energy. Beyond providing a basic understanding of the carbon-ferromagnet interfaces, this study presents a sustainable approach to tailor magnetic anisotropy in ultrathin ferromagnetic films. Magnetic properties of Co ultrathin films are shown to undergo dramatic changes upon surface carbon accumulation. Chemical transformation from molecular carbon monoxide to surface carbide and to a graphene layer progressively enhances the perpendicular magnetic anisotropy of Co. Calculations reveal that magnetocrystalline and magnetostatic contributions play distinctly different roles for the different carbon species.image
  •  
9.
  • Geilhufe, Matthias, et al. (author)
  • Dynamically induced magnetism in KTaO3
  • 2021
  • In: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 3:2
  • Journal article (peer-reviewed)abstract
    • Dynamical multiferroicity features entangled dynamic orders: fluctuating electric dipoles induce magnetization. Hence, the material with paraelectric fluctuations can develop magnetic signatures if dynamically driven. We identify the paraelectric KTaO3 (KTO) as a prime candidate for the observation of the dynamical multiferroicity. We show that when a KTO sample is exposed to a circularly polarized laser pulse, the dynamically induced ionic magnetic moments are of the order of 5% of the nuclear magneton per unit cell. We determine the phonon spectrum using ab initio methods, and we identify T-1u as relevant phonon modes that couple to the external field and induce magnetic polarization. We also predict a corresponding electron effect for the dynamically induced magnetic moment, which is enhanced by several orders of magnitude due to the significant mass difference between electron and ionic nucleus.
  •  
10.
  • Genuzio, Francesca, et al. (author)
  • A UHV MOKE magnetometer complementing XMCD-PEEM at the Elettra Synchrotron
  • 2021
  • In: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 28, s. 995-1005
  • Journal article (peer-reviewed)abstract
    • We report on a custom-built UHV-compatible Magneto-Optical Kerr Effect (MOKE) magnetometer for applications in surface and materials sciences, operating in tandem with the PhotoEmission Electron Microscope (PEEM) endstation at the Nanospectroscopy beamline of the Elettra synchrotron. The magnetometer features a liquid-nitrogen-cooled electromagnet that is fully compatible with UHV operation and produces magnetic fields up to about 140 mT at the sample. Longitudinal and polar MOKE measurement geometries are realized. The magneto-optical detection is based on polarization analysis using a photoelastic modulator. The sample manipulation system is fully compatible with that of the PEEM, making it possible to exchange samples with the beamline endstation, where complementary X-ray imaging and spectroscopy techniques are available. The magnetometer performance is illustrated by experiments on cobalt ultra-thin films, demonstrating close to monolayer sensitivity. The advantages of combining in situ growth, X-ray Magnetic Circular Dichroism imaging (XMCD-PEEM) and MOKE magnetometry into a versatile multitechnique facility are highlighted.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view