SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Booij Ronald) srt2:(2024)"

Search: WFRF:(Booij Ronald) > (2024)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aliukonyte, Ieva, et al. (author)
  • Unlocking the potential of photon counting detector CT for paediatric imaging: a pictorial essay
  • 2024
  • In: BJR OPEN. - : BRITISH INST RADIOLOGY. - 2513-9878. ; 6:1
  • Research review (peer-reviewed)abstract
    • Recent advancements in CT technology have introduced a revolutionary innovation to practice known as the Photon-Counting detector (PCD) CT imaging. The pivotal hardware enhancement of the PCD-CT scanner lies in its detectors, which consist of smaller pixels than standard detectors and allow direct conversion of individual X-rays to electrical signals. As a result, CT images are reconstructed at higher spatial resolution (as low as 0.2 mm) and reduced overall noise, at no expense of an increased radiation dose. These features are crucial for paediatric imaging, especially for infants and young children, where anatomical structures are notably smaller than in adults and in whom keeping dose as low as possible is especially relevant. Since January 2022, our hospital has had the opportunity to work with PCD-CT technology for paediatric imaging. This pictorial review will showcase clinical examples of PCD-CT imaging in children. The aim of this pictorial review is to outline the potential paediatric applications of PCD-CT across different anatomical regions, as well as to discuss the benefits in utilizing PCD-CT in comparison to conventional standard energy integrating detector CT.
  •  
2.
  • Fredäng Kämmerling, Nina, et al. (author)
  • A comparative study of image quality and diagnostic confidence in diagnosis and follow-up of scaphoid fractures using photon-counting detector CT and energy-integrating detector CT
  • 2024
  • In: European Journal of Radiology. - : ELSEVIER IRELAND LTD. - 0720-048X .- 1872-7727. ; 173
  • Journal article (peer-reviewed)abstract
    • Purpose: Scaphoid fractures in patients and assessment of healing using PCD-CT have, as far as we know, not yet been studied. Therefore, the aim was to compare photon counting detector CT (PCD-CT) with energy integrating detector CT (EID-CT) in terms of fracture visibility and evaluation of fracture healing. Method: Eight patients with scaphoid fracture were examined with EID-CT and PCD-CT within the first week posttrauma, and with additional scans at 4, 6 and 8 weeks. Our clinical protocol for wrist examination with EID-CT was used (CTDIvol 3.1 +/- 0.1 mGy, UHR kernel Ur77). For PCD-CT matched radiation dose, reconstruction kernel Br89. Quantitative analyses of noise, CNR, trabecular and cortical sharpness, and bone volume fraction were conducted. Five radiologists evaluated the images for fracture visibility, fracture gap consolidation and image quality, and rated their confidence in the diagnosis. Results: The trabecular and cortical sharpness were superior in images obtained with PCD-CT compared with EIDCT. A successive reduction in trabecular bone volume fraction during the immobilized periods was found with both systems. Despite higher noise and lower CNR with PCD-CT, radiologists rated the image quality of PCD-CT as superior. The visibility of the fracture line within 1 -week post -trauma was rated higher with PCD-CT as was diagnostic confidence, but the subsequent assessments of fracture gap consolidation during healing process and the confidence in diagnosis were found equivalent between both systems. Conclusion: PCD-CT offers superior visibility of bone microstructure compared with EID-CT. The evaluation of fracture healing and confidence in diagnosis were rated equally with both systems, but the radiologists found primary fracture visibility and overall image quality superior with PCD-CT.
  •  
3.
  • Mourad, Charbel, et al. (author)
  • Chances and challenges of photon-counting CT in musculoskeletal imaging
  • 2024
  • In: Skeletal Radiology. - : SPRINGER. - 0364-2348 .- 1432-2161.
  • Research review (peer-reviewed)abstract
    • In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view