SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bosga Sjoerd) srt2:(2022)"

Search: WFRF:(Bosga Sjoerd) > (2022)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bitsi, Konstantina, et al. (author)
  • A Case Study of Pole-Phase Changing Induction Machine Performance
  • 2022
  • In: 2022 24Th European Conference On Power Electronics And Applications (EPE'22 ECCE EUROPE). - : IEEE.
  • Conference paper (peer-reviewed)abstract
    • Pole-phase changing (PPC) induction machines (IMs) can achieve improved efficiency as well as wider torque-speed range compared to their fixed pole-phase counterparts. In this paper, a 4-pole IM is designed and evaluated in terms of its pole-phase changing performance.
  •  
2.
  •  
3.
  • Bitsi, Konstantina, et al. (author)
  • Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines
  • 2022
  • In: Energies. - : MDPI AG. - 1996-1073. ; 15:19, s. 7012-7012
  • Journal article (peer-reviewed)abstract
    • Pole-phase changing induction machines (IMs) offer the capability to extend the torque-speed envelope compared to their fixed pole-phase counterparts. Dynamic pole-changing can achieve higher torque levels at lower speeds, utilizing higher pole numbers, and extended flux-weakening range with lower pole-number operations. This paper investigates the design impact on the optimum pole-phase changing behavior and respective split of the operating region to different pole-phase operations. Additionally, the improvement in terms of the overall torque per ampere capability and efficiency is illustrated. For the purposes of the analysis, two different IMs with wound independently-controlled stator coils (WICSC) and different original pole numbers are evaluated in an effort to quantify the extent of the benefits of pole-phase changing. These geometries correspond to machines that were originally designed with 2- and 6 magnetic poles, respectively. It is shown that, in the case of the original 2-pole WICSC machine, shifting to a higher pole number is notably beneficial in terms of efficiency in a significant part of the operating region, whereas in the original 6-pole, both higher and lower pole numbers significantly enhance the overall torque capability and efficiency. The results highlight the notable benefits of pole-phase changing IMs and offer deep insight towards the derivation of standard design guidelines for these machines.
  •  
4.
  • Bitsi, Konstantina (author)
  • On Electrical Machine Topologies for Electric Vehicle Applications
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • The deployment of electric vehicles is considered a viable solution towardsreducing the global greenhouse-gas emissions and fossil-fuel consumption. Inorder to produce highly efficient and economically feasible electrical drivesystems, the selection of suitable electric motor designs is a key step.The target of this work is to identify, analyze and compare suitable elec-trical machine topologies for automotive applications based on highly coupledand conflicting criteria. For this purpose, an evolutionary multi-objective op-timization is developed that can yield a set of Pareto-optimal solutions and,thus, offer different compromises among the considered design-objectives. Theefficacy of the algorithm is demonstrated, rendering it an important tool forthe subsequent analysis.In the first part of this thesis, the investigation of pole-phase changinginduction machines is presented. A special induction machine topology withwound, independently-controlled stator coils (WICSC) is introduced. Thestator-winding configuration in this machine permits the individual energiza-tion and current control of the toroidal coil in each stator slot, thus facilitatingthe real-time change of both phase and pole number. The 2D magnetic and3D thermal finite-element method (FEM) models of this machine are devel-oped, as well as an analytical transient model of the current dynamics. Adetailed investigation of the behavior of pole-phase changing induction ma-chines and the impact of their design on the selection of optimum pole-phaseoperations throughout the entire operating region is performed. Specifically,three WICSC machines that were originally designed with 2, 4 and 6 fixedmagnetic poles are evaluated as pole-phase changing machines with the aim ofdetermining the overall improvement in terms of torque per ampere capabilityand efficiency.The second part of this work is focused on the design and performance ofaxial-flux induction machines (AFIMs). An electromagnetic sizing algorithmfor the design of AFIMs is developed, which adopts a geometrical approachto the design problem, while minimizing the use of empirical factors. Theeffectiveness of this algorithm is experimentally validated, using a commercialdouble-stator AFIM utilized as an integrated starter generator in a hybridelectric vehicle application. Moreover, in order to assess the benefits of pole-changing in axial-flux structures, the optimization of an interior-permanentmagnet synchronous machine, a radial-flux WICSC machine and a double-rotor axial-flux WICSC machine is carried out for a heavy vehicle applicationand the comparison of their Pareto-optimal solutions is presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view