SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brenning Nils) srt2:(2020-2024)"

Sökning: WFRF:(Brenning Nils) > (2020-2024)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antunes, V. G., et al. (författare)
  • Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The high power impulse magnetron sputtering (HiPIMS) discharge brings about increased ionization of the sputtered atoms due to an increased electron density and efficient electron energization during the active period of the pulse. The ionization is effective mainly within the electron trapping zone, an ionization region (IR), defined by the magnet configuration. Here, the average extension and the volume of the IR are determined based on measuring the optical emission from an excited level of the argon working gas atoms. For particular HiPIMS conditions, argon species ionization and excitation processes are assumed to be proportional. Hence, the light emission from certain excited atoms is assumed to reflect the IR extension. The light emission was recorded above a 100 mm diameter titanium target through a 763 nm bandpass filter using a gated camera. The recorded images directly indicate the effect of the magnet configuration on the average IR size. It is observed that the shape of the IR matches the shape of the magnetic field lines rather well. The IR is found to expand from 10 and 17 mm from the target surface when the parallel magnetic field strength 11 mm above the racetrack is lowered from 24 to 12 mT at a constant peak discharge current.
  •  
2.
  • Babu, Swetha Suresh, et al. (författare)
  • Modeling of high power impulse magnetron sputtering discharges with tungsten target
  • 2022
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 31:6, s. 065009-
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge with a tungsten target. The IRM gives the temporal variation of the various species and the average electron energy, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. It is shown that an initial peak in the discharge current is due to argon ions bombarding the cathode target. After the initial peak, the W+ ions become the dominating ions and remain as such to the end of the pulse. We demonstrate how the contribution of the W+ ions to the total discharge current at the target surface increases with increased discharge voltage for peak discharge current densities J (D,peak) in the range 0.33-0.73 A cm(-2). For the sputtered tungsten the ionization probability increases, while the back-attraction probability decreases with increasing discharge voltage. Furthermore, we discuss the findings in terms of the generalized recycling model and compare to experimentally determined deposition rates and find good agreement.
  •  
3.
  • Barynova, Kateryna, et al. (författare)
  • On working gas rarefaction in high power impulse magnetron sputtering
  • 2024
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to explore working gas rarefaction in high power impulse magnetron sputtering discharges operated with graphite, aluminum, copper, titanium, zirconium, and tungsten targets. For all cases the working gas rarefaction is found to be significant, the degree of working gas rarefaction reaches values of up to 83%. The various contributions to working gas rarefaction, including electron impact ionization, kick-out by the sputtered species or hot argon atoms, and diffusion, are evaluated and compared for the different target materials, and over a range of discharge current densities. The relative importance of the various processes varies between different target materials. In the case of a graphite target with argon as the working gas at 1 Pa, electron impact ionization (by both primary and secondary electrons) is the dominating contributor to working gas rarefaction, with over 90% contribution, while the contribution of sputter wind kick-out is small < 10 %. In the case of copper and tungsten targets, the kick-out dominates, with up to ∼60% contribution at 1 Pa. For metallic targets the kick-out is mainly due to metal atoms sputtered from the target, while for the graphite target the small kick-out contribution is mainly due to kick-out by hot argon atoms and to a smaller extent by carbon atoms. The main factors determining the relative contribution of the kick-out by the sputtered species to working gas rarefaction appear to be the sputter yield and the working gas pressure.
  •  
4.
  • Brenning, Nils, et al. (författare)
  • HiPIMS optimization by using mixed high-power and low-power pulsing
  • 2021
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 30:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility to optimize a high-power impulse magnetron sputtering (HiPIMS) discharge through mixing two different power levels in the pulse pattern is investigated. Standard HiPIMS pulses are used to create the ions of the film-forming material. After each HiPIMS pulse an off-time follows, during which no voltage (or, optionally, a reversed voltage) is applied, letting the remaining ions in the magnetic trap escape towards the substrate. After these off-times, a long second pulse with lower amplitude, in the dc magnetron sputtering range, is applied. During this pulse, which is continued up to the following HiPIMS pulse, mainly neutrals of the film-forming material are produced. This pulse pattern makes it possible to achieve separate optimization of the ion production, and of the neutral atom production, that constitute the film-forming flux to the substrate. The optimization process is thereby separated into two sub-problems. The first sub-problem concerns minimizing the energy cost for ion production, and the second sub-problem deals with how to best split a given allowed discharge power between ion production and neutral production. The optimum power split is decided by the lowest ionized flux fraction that gives the desired film properties for a specific application. For the first sub-problem we describe a method where optimization is achieved by the selection of five process parameters: the HiPIMS pulse amplitude, the HiPIMS pulse length, the off-time, the working gas pressure, and the magnetic field strength. For the second sub-problem, the splitting of power between ion and neutral production, optimization is achieved by the selection of the values of two remaining process parameters, the HiPIMS pulse repetition frequency and the discharge voltage of the low-power pulse.
  •  
5.
  • Brenning, Nils, et al. (författare)
  • Optimization of HiPIMS discharges : The selection of pulse power, pulse length, gas pressure, and magnetic field strength
  • 2020
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In high power impulse magnetron sputtering (HiPIMS) operation, there are basically two goals: a high ionized flux fraction of the sputtered target material and a high deposition rate. In this work, it is demonstrated that the former always comes at the cost of the latter. This makes a choice necessary, referred to as the HiPIMS compromise. It is here proposed that this compromise is most easily made by varying the discharge current amplitude, which opens up for optimization of additionally four external process parameters: the pulse length, the working gas pressure, the magnetic field strength, and the degree of magnetic unbalance to achieve the optimum combination of the ionized flux fraction and the deposition rate. As a figure of merit, useful for comparing different discharges, ( 1 - beta t ) is identified, which is the fraction of ionized sputtered material that escapes back-attraction toward the cathode target. It is shown that a discharge with a higher value of ( 1 - beta t ) always can be arranged to give better combinations of ionization and deposition rate than a discharge with a lower ( 1 - beta t ). Maximization of ( 1 - beta t ) is carried out empirically, based on data from two discharges with Ti targets in Ar working gas. These discharges were first modeled in order to convert measured plasma parameters to values of ( 1 - beta t ). The combined effects of varying the different process parameters were then analyzed using a process flow chart model. The effect of varying the degree of unbalance in the studied range was small. For the remaining three parameters, it is found that optimum is achieved by minimizing the magnetic field strength, minimizing the working gas pressure, and minimizing the pulse length as far as compatible with the requirement to ignite and maintain a stable discharge.
  •  
6.
  • Du, Hao, et al. (författare)
  • Bipolar HiPIMS : The role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films
  • 2021
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 416
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar high-power impulse magnetron sputtering (HiPIMS) is used to achieve ion acceleration for ion bombardment of dielectric thin films. This is realized by increasing the plasma potential (U-p), during the interval in-between the HiPIMS-pulses, using a positive reversed voltage (U-rev). As long as the film surface potential (U-s) is maintained low, close to ground potential, this increase in U-p results in ion-acceleration as ions approach the film surface. The effect of U-rev on the ion bombardment is demonstrated by the growth of dielectric (Al,Cr)(2)O-3 films on two sets of substrates, Si (001) and sapphire (0001) utilizing a U-rev ranging from 0 to 300 V. A clear ion bombardment effect is detected in films grown on the conductive Si substrate, while no, or a very small, effect is observed in films grown on the dielectric sapphire substrate. This is ascribed to the changes in U-s when the substrate is subjected to the bombardment of positive ions. For a film surface that has a high capacitance to ground, U-s remains close to ground potential for an extended time in-between the HiPIMS pulses, while if the capacitance is low, U-s quickly attains floating potential (U-float) close to U-p. The simulated temporal evolutions of U-s for the films by using capacitors show that for a 1 mu m thick (Al,Cr)(2)O-3 film on a conductive substrate, U-s is maintained close to ground potential during the entire 20 mu s that U-rev is applied after the HiPIMS pulse. On the other hand, when a capacitance corresponding to the 0.5 mm thick sapphire substrate is used, U-s rapidly attains a potential close to U-rev.
  •  
7.
  • Ekeroth, Sebastian, et al. (författare)
  • Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:12, s. 12957-12965
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen evolution reaction (HER) is a key process in electrochemical water splitting. To lower the cost and environmental impact of this process, it is highly motivated to develop electrocatalysts with low or no content of noble metals. Here, we report on an ingenious synthesis of hybrid PtxNi1-x electrocatalysts in the form of a nanoparticle-nanonetwork structure with very low noble metal content. The structure possesses important features such as good electrical conductivity, high surface area, strong interlinking, and substrate adhesion, which render an excellent HER activity. Specifically, the best performing Pt0.05Ni0.95 sample demonstrates a Tafel slope of 30 mV dec-1 in 0.5 M H2SO4 and an overpotential of 20 mV at a current density of 10 mA cm-2 with high stability. The impressive catalytic performance is further rationalized in a theoretical study, which provides insight into the mechanism on how such small platinum content can allow for close-to-optimal adsorption energies for hydrogen.
  •  
8.
  • Eliasson, H., et al. (författare)
  • Modeling of high power impulse magnetron sputtering discharges with graphite target
  • 2021
  • Ingår i: Plasma sources science & technology. - : IOP Publishing Ltd. - 0963-0252 .- 1361-6595. ; 30:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge in argon with a graphite target. Using the IRM, the temporal variation of the various species and the average electron energy, as well as internal parameters such as the ionization probability, back-attraction probability, and the ionized flux fraction of the sputtered species, is determined. It is found that thedischarge develops into working gas recycling and most of the discharge current at the cathode target surface is composed of Ar+ ions, which constitute over 90% of the discharge current, while the contribution of the C+ ions is always small (<5%), even for peak current densities close to 3 A cm(-2). For the target species, the time-averaged ionization probability is low, or 13-27%, the ion back-attraction probability during the pulse is high (>92%), and the ionized flux fraction is about 2%. It is concluded that in the operation range studied here it is a challenge to ionize carbon atoms, that are sputtered off of a graphite target in a magnetron sputtering discharge, when depositing amorphous carbon films.
  •  
9.
  • Fischer, Joel, et al. (författare)
  • Insights into the copper HiPIMS discharge : deposition rate and ionised flux fraction
  • 2023
  • Ingår i: Plasma sources science & technology. - : IOP Publishing. - 0963-0252 .- 1361-6595. ; 32:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of pulse length, working gas pressure, and peak discharge current density on the deposition rate and ionised flux fraction in high power impulse magnetron sputtering discharges of copper is investigated experimentally using a charge-selective (electrically biasable) magnetically shielded quartz crystal microbalance (or ionmeter). The large explored parameter space covers both common process conditions and extreme cases. The measured ionised flux fraction for copper is found to be in the range from ≈10% to 80%, and to increase with increasing peak discharge current density up to a maximum at ≈ 1.25 A cm − 2 , before abruptly falling off at even higher current density values. Low working gas pressure is shown to be beneficial in terms of both ionised flux fraction and deposition rate fraction. For example, decreasing the working gas pressure from 1.0 Pa to 0.5 Pa leads on average to an increase of the ionised flux fraction by ≈ 14 percentage points (pp) and of the deposition rate fraction by ≈ 4 pp taking into account all the investigated pulse lengths.
  •  
10.
  • Hajihoseini, Hamidreza, et al. (författare)
  • Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering
  • 2020
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The sideways (radial) deposition rate and ionized flux fraction in a high power impulse magnetron sputtering (HiPIMS) discharge are studied and compared to a dc magnetron sputtering (dcMS) discharge, while the magnetic field strength | B | and degree of balancing are varied. A significant deposition of the film forming material perpendicular to the target surface is observed for both sputter techniques. This sideways deposition decreases with increasing axial distance from the target surface. The sideways deposition rate is always the highest in dc operation, while it is lower for HiPIMS operation. The magnetic field strength has a strong influence on the sideways deposition rate in HiPIMS but not in dcMS. Furthermore, in HiPIMS operation, the radial ion deposition rate is always at least as large as the axial ion deposition rate and often around two times higher. Thus, there are a significantly higher number of ions traveling radially in the HiPIMS discharge. A comparison of the total radial as well as axial fluxes across the entire investigated plasma volume between the target and the substrate position allows for revised estimates of radial over axial flux fractions for different magnetic field configurations. It is here found that the relative radial flux of the film forming material is greater in dcMS compared to HiPIMS for almost all cases investigated. It is therefore concluded that the commonly reported reduction of the (axial) deposition rate in HiPIMS compared to dcMS does not seem to be linked with an increase in sideways material transport in HiPIMS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy