SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Burrows P. N.) srt2:(2015-2019)"

Search: WFRF:(Burrows P. N.) > (2015-2019)

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Evans, P. A., et al. (author)
  • Swift and NuSTAR observations of GW170817 : Detection of a blue kilonova
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1565-1569
  • Journal article (peer-reviewed)abstract
    • With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counter part of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (approximate to 0.03 solar masses) wind-driven outflow with moderate electron fraction (Y-e approximate to 0.27). Combined with the x-ray limits, we favor an observer viewing angle of approximate to 30 degrees away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a gamma-ray burst afterglow).
  •  
5.
  • Clement, E., et al. (author)
  • Conceptual design of the AGATA 1 π array at GANIL
  • 2017
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 855, s. 1-12
  • Journal article (peer-reviewed)abstract
    • The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l π array are presented.
  •  
6.
  • Datry, T., et al. (author)
  • A global analysis of terrestrial plant litter dynamics in non-perennial waterways
  • 2018
  • In: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 11:7, s. 497-503
  • Journal article (peer-reviewed)abstract
    • Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
  •  
7.
  • von Schiller, D., et al. (author)
  • Sediment Respiration Pulses in Intermittent Rivers and Ephemeral Streams
  • 2019
  • In: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 33:10, s. 1251-1263
  • Journal article (peer-reviewed)abstract
    • Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32-fold to 66-fold upon sediment rewetting. Structural equation modeling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use, and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2-0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting-drying cycles on respiration and CO2 emissions in stream networks.
  •  
8.
  • Podolyák, Zs, et al. (author)
  • Role of the Δ Resonance in the Population of a Four-Nucleon State in the 56Fe → 54Fe Reaction at Relativistic Energies
  • 2016
  • In: Physical Review Letters. - 0031-9007. ; 117:22
  • Journal article (peer-reviewed)abstract
    • The Fe54 nucleus was populated from a 56Fe beam impinging on a Be target with an energy of E/A=500 MeV. The internal decay via γ-ray emission of the 10+ metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the 56Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of 54Fe, suggesting that it was populated via the decay of the Δ0 resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10+ metastable state in 54Fe is a consequence of the quark structure of the nucleons.
  •  
9.
  •  
10.
  • Goldkuhle, A., et al. (author)
  • Lifetime measurements in Ti-52,Ti-54 to study shell evolution toward N=32
  • 2019
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 100:5
  • Journal article (peer-reviewed)abstract
    • Lifetimes of the excited states in the neutron-rich Ti-52,Ti-54 nuclei, produced in a multinucleon-transfer reaction, were measured by employing the Cologne plunger device and the recoil-distance Doppler-shift method. The experiment was performed at the Grand Accelerateur National d'Ions Lourds facility by using the Advanced Gamma Tracking Array for the gamma-ray detection, coupled to the large-acceptance variable mode spectrometer for an event-by-event particle identification. A comparison between the transition probabilities obtained from the measured lifetimes of the 2(1)(+) to 8(1)(+) yrast states in Ti-52,Ti-54 and that from the shell-model calculations based on the well-established GXPF1A, GXPF1B, and KB3G fp shell interactions support the N = 32 subshell closure. The B(E2) values for Ti-52 determined in this work are in disagreement with the known data, but are consistent with the predictions of the shell-model calculations and reduce the previously observed pronounced staggering across the even-even titanium isotopes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view