SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Buxton P) srt2:(2020-2022)"

Search: WFRF:(Buxton P) > (2020-2022)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Li, Chen, et al. (author)
  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length
  • 2020
  • In: American Journal of Human Genetics. - : CELL PRESS. - 0002-9297 .- 1537-6605. ; 106:3, s. 389-404
  • Journal article (peer-reviewed)abstract
    • Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
  •  
3.
  • Agredano Torres, Manuel, et al. (author)
  • Coils and power supplies design for the SMART tokamak
  • 2021
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 168, s. 112683-112683
  • Journal article (peer-reviewed)abstract
    • A new spherical tokamak, the SMall Aspect Ratio Tokamak (SMART), is currently being designed at the University of Seville. The goal of the machine is to achieve a toroidal field of 1 T, a plasma current of 500 kA and a pulse length of 500 ms for a plasma with a major radius of 0.4 m and minor radius of 0.25 m. This contribution presents the design of the coils and power supplies of the machine. The design foresees a central solenoid, 12 toroidal field coils and 8 poloidal field coils. Taking the current waveforms for these set of coils as starting point, each of them has been designed to withstand the Joule heating during the tokamak operation time. An analytical thermal model is employed to obtain the cross sections of each coil and, finally, their dimensions and parameters. The design of flexible and modular power supplies, based on IGBTs and supercapacitors, is presented. The topologies and control strategy of the power supplies are explained, together with a model in MATLAB Simulink to simulate the power supplies performance, proving their feasibility before the construction of the system.
  •  
4.
  • Doyle, S.J., et al. (author)
  • Magnetic equilibrium design for the SMART tokamak
  • 2021
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 171, s. 112706-112706
  • Journal article (peer-reviewed)abstract
    • The SMall Aspect Ratio Tokamak (SMART) device is a new compact (plasma major radius Rgeo≥0.40 m, minor radius a≥0.20 m, aspect ratio A≥1.7) spherical tokamak, currently in development at the University of Seville. The SMART device has been designed to achieve a magnetic field at the plasma center of up to Bϕ=1.0 T with plasma currents up to Ip=500 kA and a pulse length up to τft=500 ms. A wide range of plasma shaping configurations are envisaged, including triangularities between −0.50≤δ≤0.50 and elongations of κ≤2.25. Control of plasma shaping is achieved through four axially variable poloidal field coils (PF), and four fixed divertor (Div) coils, nominally allowing operation in lower-single null, upper-single null and double-null configurations. This work examines phase 2 of the SMART device, presenting a baseline reference equilibrium and two highly-shaped triangular equilibria. The relevant PF and Div coil current waveforms are also presented. Equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.
  •  
5.
  • Mancini, A., et al. (author)
  • Mechanical and electromagnetic design of the vacuum vessel of the SMART tokamak
  • 2021
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 171
  • Journal article (peer-reviewed)abstract
    • The SMall Aspect Ratio Tokamak (SMART) is a new spherical device that is currently being designed at the University of Seville. SMART is a compact machine with a plasma major radius () greater than 0.4 m, plasma minor radius () greater than 0.2 m, an aspect ratio () over than 1.7 and an elongation () of more than 2. It will be equipped with 4 poloidal field coils, 4 divertor field coils, 12 toroidal field coils and a central solenoid. The heating system comprises of a Neutral Beam Injector (NBI) of 600 kW and an Electron Cyclotron Resonance Heating (ECRH) of 6 kW for pre-ionization. SMART has been designed for a plasma current () of 500 kA, a toroidal magnetic field () of 1 T and a pulse length of 500 ms preserving the compactness of the machine. The free boundary equilibrium solver code FIESTA [1] coupled to the linear time independent, rigid plasma model RZIP [2] has been used to calculate the target equilibria taking into account the physics goals, the required plasma parameters, vacuum vessel structures and power supply requirements. We present here the final design of the SMART vacuum vessel together with the Finite Element Model (FEM) analysis carried out to ensure that the tokamak vessel provides high quality vacuum and plasma performance withstanding the electromagnetic  loads caused by the interaction between the eddy currents induced in the vessel itself and the surrounding magnetic fields. A parametric model has been set up for the topological optimization of the vessel where the thickness of the wall has been locally adapted to the expected forces. An overview of the new machine is presented here.
  •  
6.
  • Dominoni, Davide M., et al. (author)
  • Why conservation biology can benefit from sensory ecology
  • 2020
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4:4, s. 502-511
  • Journal article (peer-reviewed)abstract
    • Anthropogenic sensory pollutants, such as noise, light and chemicals, are affecting biodiversity. This Perspective uses an understanding of animal sensory ecology to explore how these impacts can be mitigated. Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view