SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Callaghan A) srt2:(2020-2023)"

Search: WFRF:(Callaghan A) > (2020-2023)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Callaghan, D. A., et al. (author)
  • Geographic range and population size of the habitat specialist Codonoblepharon forsteri in a changing climate
  • 2022
  • In: Journal of Bryology. - 0373-6687 .- 1743-2820. ; 44:1, s. 35-40
  • Journal article (peer-reviewed)abstract
    • Introduction: Codonoblepharon forsteri is a rare epiphytic moss characteristically associated with water-filled holes in trees. This study aims to review its range and population and assess effects of climate change.Methods: An inventory of sites from where C. forsteri has been recorded was compiled. Extent of Occurrence (EOO) and Area of Occupancy (AOO) were calculated. Population size was estimated, using an occupied tree as an ‘individual-equivalent’ of the moss. Climatic conditions of its current distribution were characterised, and an ensemble model of its distribution generated. The latter was projected onto present and future climatic layers.Results: C. forsteri has been recorded from 205 sites in 18 countries, in Europe, N Africa and SW Asia. It has been undergoing an overall decline. Most sites have few occupied trees, and a world population of 1000–10,000 individual-equivalents is estimated. Model projections suggest the species will experience a range increase of +0.27–0.78 by 2050 and +0.34–0.97 by 2070, especially in the NW, in particular across France and the UK. Range loss is predicted to be -0.16–0.23 in 2050 and -0.18–0.32 in 2070, affecting the driest areas of the current range around the Mediterranean, especially in N Africa.Conclusions: C. forsteri has a relatively large EOO but a relatively small AOO, likely the product of its habitat specialism. A major reason for recent declines appears to be widespread abandonment of traditional ‘pollarding’ of trees. The potential climatic range of the species will shift significantly northwards over the next few decades
  •  
5.
  • Tokarew, JM, et al. (author)
  • Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites
  • 2021
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 141:5, s. 725-754
  • Journal article (peer-reviewed)abstract
    • The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson’s-linked neurodegeneration.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Garcia-Martin, E. Elena, et al. (author)
  • Sources, Composition, and Export of Particulate Organic Matter Across British Estuaries
  • 2023
  • In: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 128:4
  • Journal article (peer-reviewed)abstract
    • Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (-26.7 +/- 0.42 parts per thousand, average +/- sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore. Plain Language Summary Estuaries transport and process a large amount terrigenous particulate organic matter (i.e., carbon and nitrogen) prior to its export to coastal waters. In order to understand the fate of organic carbon and the role of estuaries in the global carbon cycle it is essential to improve our knowledge on its composition, origin, and amount of carbon transported. We quantified the elemental concentrations and stable isotopes composition of carbon and nitrogen to quantify the amount of terrigenous particulate organic matter transported by 13 British estuaries, which drain catchments of diverse land cover under different hydrological conditions. We found a great variability in particulate organic carbon (POC) and particulate organic nitrogen concentrations across the salinity gradient, implying inputs, and losses of material within the estuaries. Each estuary had similar sources of particulate material throughout the year. In most of the estuaries, the POC had a terrigenous origin at the lowest salinity waters. The terrigenous organic carbon contribution decreased toward coastal waters with an average contribution of 57% at the highest salinity waters, indicating a large transport of terrigenous organic carbon into coastal waters.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view