SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Canepa M.) srt2:(2020-2024)"

Search: WFRF:(Canepa M.) > (2020-2024)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Palacin, M. R., et al. (author)
  • Roadmap on multivalent batteries
  • 2024
  • In: JPhys Energy. - 2515-7655. ; 6:3
  • Research review (peer-reviewed)abstract
    • Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
  •  
7.
  • Sainas, Stefano, et al. (author)
  • Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold : SAR of the Aryloxyaryl Moiety
  • 2022
  • In: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 65:19, s. 12701-12724
  • Journal article (peer-reviewed)abstract
    • In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view