SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carlos Sierra) srt2:(2021)"

Search: WFRF:(Carlos Sierra) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gudmundsson, Jón E., et al. (author)
  • The Simons Observatory : modeling optical systematics in the Large Aperture Telescope
  • 2021
  • In: Applied Optics. - 1559-128X .- 2155-3165. ; 60:4, s. 823-837
  • Journal article (peer-reviewed)abstract
    • We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
  •  
2.
  • Sierra, Carlos (author)
  • A Regional Earth System Data Lab for Understanding Ecosystem Dynamics: An Example from Tropical South America
  • 2021
  • In: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Journal article (peer-reviewed)abstract
    • Tropical ecosystems experience particularly fast transformations largely as a consequence of land use and climate change. Consequences for ecosystem functioning and services are hard to predict and require analyzing multiple data sets simultaneously. Today, we are equipped with a wide range of spatio-temporal observation-based data streams that monitor the rapid transformations of tropical ecosystems in terms of state variables (e.g., biomass, leaf area, soil moisture) but also in terms of ecosystem processes (e.g., gross primary production, evapotranspiration, runoff). However, the underexplored joint potential of such data streams, combined with deficient access to data and processing, constrain our understanding of ecosystem functioning, despite the importance of tropical ecosystems in the regional-to-global carbon and water cycling. Our objectives are: 1. To facilitate access to regional “Analysis Ready Data Cubes” and enable efficient processing 2. To contribute to the understanding of ecosystem functioning and atmosphere-biosphere interactions. 3. To get a dynamic perspective of environmental conditions for biodiversity. To achieve our objectives, we developed a regional variant of an “Earth System Data Lab” (RegESDL) tailored to address the challenges of northern South America. The study region extensively covers natural ecosystems such as rainforest and savannas, and includes strong topographic gradients (0–6,500 masl). Currently, environmental threats such as deforestation and ecosystem degradation continue to increase. In this contribution, we show the value of the approach for characterizing ecosystem functioning through the efficient implementation of time series and dimensionality reduction analysis at pixel level. Specifically, we present an analysis of seasonality as it is manifested in multiple indicators of ecosystem primary production. We demonstrate that the RegESDL has the ability to underscore contrasting patterns of ecosystem seasonality and therefore has the potential to contribute to the characterization of ecosystem function. These results illustrate the potential of the RegESDL to explore complex land-surface processes and the need for further exploration. The paper concludes with some suggestions for developing future big-data infrastructures and its applications in the tropics.
  •  
3.
  • Sierra, Carlos (author)
  • The fate and transit time of carbon in a tropical forest
  • 2021
  • In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 109, s. 2845-2855
  • Journal article (peer-reviewed)abstract
    • Tropical forests fix large quantities of carbon from the atmosphere every year; however, the fate of this carbon as it travels through ecosystem compartments is poorly understood. In particular, there is a large degree of uncertainty regarding the time carbon spends in an ecosystem before it is respired and returns to the atmosphere as CO2. We estimated the fate of carbon (trajectory of photosynthetically fixed carbon through a network of compartments) and its transit time (time it takes carbon to pass through the entire ecosystem, from fixation to respiration) for an old-growth tropical forest located in the foothills of the Andes of Colombia. We show that on average, 50% of the carbon fixed at any given time is respired in <0.5 years, and 95% is respired in <69 years. The transit time distribution shows that carbon in ecosystems is respired on a range of time-scales that span decades, but fast metabolic processes in vegetation dominate the return of carbon to the atmosphere. Synthesis. The transit time distribution integrates multiple ecosystem processes occurring at a wide range of time-scales. It reconciles measurements of the age of respired CO2 with estimates of mean residence time in woody biomass, and provides a new approach to interpret other ecosystem level metrics such as the ratio of net primary production to gross primary production.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view