SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Castellón S.) srt2:(2020)"

Search: WFRF:(Castellón S.) > (2020)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Stritzinger, M. D., et al. (author)
  • The Carnegie Supernova Project II : Observations of the luminous red nova AT 2014ej
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Journal article (peer-reviewed)abstract
    • We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectroscopic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double-hump light curve and spectral properties similar to that of LRN SN 2017jfs. A medium-dispersion visual-wavelength spectrum of AT 2014ej taken with the Magellan Clay telescope exhibits a P Cygni H alpha feature characterized by a blue velocity at zero intensity of approximate to 110 km s(-1) and a P Cygni minimum velocity of approximate to 70 km s(-1). We attribute this to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies at the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared light curves of well-observed LRNe to common-envelope evolution models from the literature indicates that the models underpredict the luminosity of the comparison sample at all phases and also produce inconsistent timescales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space we explore here and therefore may consider more massive systems and a wider range of dynamical timescales.
  •  
2.
  • Stritzinger, M. D., et al. (author)
  • The Carnegie Supernova Project II Early observations and progenitor constraints of the Type Ib supernova LSQ13abf
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 634
  • Journal article (peer-reviewed)abstract
    • Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and then followed by the Carnegie Supernova Project II at its optical and near-IR wavelengths. Our analysis indicates that LSQ13abf was discovered within two days of explosion and its first approximate to 10 days of evolution reveal a B-band light curve with an abrupt drop in luminosity. Contemporaneously, the V-band light curve exhibits a rise towards a first peak and the r- and i-band light curves show no early peak.The early light-curve evolution of LSQ13abf is reminiscent of the post-explosion cooling phase observed in the Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf also resembles SN 2008D, with P Cygni Hei features that strengthen over several weeks. Spectral energy distributions are constructed from the broad-bandphotometry, a UVOIR light curve is constructed by fitting black-body (BB) functions, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and an in addition to a post-shock breakout cooling model to the first two epochs of the bolometric evolution. This combined model suggests an explosion energy of 1.27 +/- 0.23 x 10(51) ergs, in addition to a relatively high ejecta mass of 5.94 +/- 1.10 M-circle dot, a Ni-56 mass of 0.16 +/- 0.02 M-circle dot, and a progenitor-star radius of 28.0 +/- 7.5 R-circle dot. The ejecta mass suggests the origins of LSQ13abf lie with a >25 M-circle dot zero-age-main-sequence mass progenitor and its estimated radius is three times larger compared to the result obtained from the same analysis applied to observations of SN 2008D, and nine times larger compared to SN 1999ex. Alternatively, a comparison of hydrodynamical simulations of greater than or similar to 20-25 M-circle dot zero-age-main-sequence progenitors that evolve to pre-supernova envelope masses of less than or similar to 10 M-circle dot and extended (similar to 100 R-circle dot) envelopes also broadly match the observations of LSQ13abf.
  •  
3.
  • Taddia, Francesco, et al. (author)
  • The Carnegie Supernova Project II : The shock wave revealed through the fog : The strongly interacting Type IIn SN 2013L
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Journal article (peer-reviewed)abstract
    • We present ultra-violet (UV) to mid-infrared (MIR) observations of the long-lasting Type IIn supernova (SN) 2013L obtained by the Carnegie Supernova Project II beginning two days after discovery and extending until +887 days (d). The SN reached a peak r-band absolute magnitude of approximate to -19 mag and an even brighter UV peak, and its light curve evolution resembles that of SN 1988Z. The spectra of SN 2013L are dominated by hydrogen emission features, characterized by three components attributed to different emission regions. A unique feature of this Type IIn SN is that, apart from the first epochs, the blue shifted line profile is dominated by the macroscopic velocity of the expanding shock wave of the SN. We are therefore able to trace the evolution of the shock velocity in the dense and partially opaque circumstellar medium (CSM), from similar to 4800 km s(-1) at +48 d, decreasing as t(-0.23) to similar to 2700 km s(-1) after a year. We performed spectral modeling of both the broad- and intermediate-velocity components of the H alpha line profile. The high-velocity component is consistent with emission from a radially thin, spherical shell located behind the expanding shock with emission wings broadened by electron scattering. We propose that the intermediate component originates from preionized gas from the unshocked dense CSM with the same velocity as the narrow component, similar to 100 km s(-1), but also that it is broadened by electron scattering. These features provide direct information about the shock structure, which is consistent with model calculations. The spectra exhibit broad OI and [OI] lines that emerge at greater than or similar to +144 d and broad CaII features. The spectral continua and the spectral energy distributions (SEDs) of SN 2013L after +132 d are well reproduced by a two-component black-body (BB) model; one component represents emitting material with a temperature between 5 x 10(3) and 1.5 x 10(4) K (hot component) and the second component is characterized by a temperature around 1-1.5 x 10(3) K (warm component). The warm component dominates the emission at very late epochs (greater than or similar to +400 d), as is evident from both the last near infrared (NIR) spectrum and MIR observations obtained with the Spitzer Space Telescope. Using the BB fit to the SEDs, we constructed a bolometric light curve that was modeled together with the unshocked CSM velocity and the shock velocity derived from the H alpha line modeling. The circumstellar-interaction model of the bolometric light curve reveals a mass-loss rate history with large values (1.7x10(-2)-0.15 M-circle dot yr(-1)) over the similar to 25-40 years before explosion, depending on the radiative efficiency and anisotropies in the CSM. The drop in the light curve at similar to 350 days and the presence of electron scattering wings at late epochs indicate an anisotropic CSM. The mass-loss rate values and the unshocked-CSM velocity are consistent with the characteristics of a massive star, such as a luminous blue variable (LBV) undergoing strong eruptions, similar to eta Carinae. Our analysis also suggests a scenario where pre-existing dust grains have a distribution that is characterized by a small covering factor.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view