SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chaplin V.) srt2:(2010-2014)"

Search: WFRF:(Chaplin V.) > (2010-2014)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ackermann, M., et al. (author)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Journal article (peer-reviewed)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
2.
  • Ackermann, M., et al. (author)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Journal article (peer-reviewed)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
3.
  • Preece, R., et al. (author)
  • The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 51-54
  • Journal article (peer-reviewed)abstract
    • Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
  •  
4.
  • Rauer, H., et al. (author)
  • The PLATO 2.0 mission
  • 2014
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Journal article (peer-reviewed)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
5.
  •  
6.
  • Gruber, D, et al. (author)
  • Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528:A15
  • Journal article (peer-reviewed)abstract
    • Aims: In this paper we examine gamma-ray and optical data of GRB 091024, a gamma-ray burst (GRB) with an extremely long duration of T90 $\approx$ 1020 s, as observed with the Fermi Gamma-ray Burst Monitor (GBM). Methods: We present spectral analysis of all three distinct emission episodes using data from Fermi/GBM. Because of the long nature of this event, many ground-based optical telescopes slewed to its location within a few minutes and thus were able to observe the GRB during its active period. We compare the optical and gamma-ray light curves. Furthermore, we estimate a lower limit on the bulk Lorentz factor from the variability and spectrum of the GBM light curve and compare it with that obtained from the peak time of the forward shock of the optical afterglow. Results: From the spectral analysis we note that, despite its unusually long duration, this burst is similar to other long GRBs, i.e. there is spectral evolution (both the peak energy and the spectral index vary with time) and spectral lags are measured. We find that the optical light curve is highly anti-correlated to the prompt gamma-ray emission, with the optical emission reaching the maximum during an epoch of quiescence in the prompt emission. We interpret this behavior as the reverse shock (optical flash), expected in the internal-external shock model of GRB emission but observed only in a handful of GRBs so far. The lower limit on the initial Lorentz factor deduced from the variability time scale (Γmin = 195_-110+90) is consistent within the error to the one obtained using the peak time of the forward shock (Γ0 = 120) and is also consistent with Lorentz factors of other long GRBs.
  •  
7.
  • Gruber, D, et al. (author)
  • Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531:A20
  • Journal article (peer-reviewed)abstract
    • Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν spectrum (Ep,rest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T90,rest) and the isotropic equivalent bolometric energy (Eiso). Results: The distribution of Ep,rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-Ep population is found but the distribution is biased against low Ep values. We find the lowest possible Ep that GBM can recover to be $\approx$ 15 keV. The T90,rest distribution of long GRBs peaks at ~10 s. The distribution of Eiso has mean and median values of 8.9 × 1052 erg and 8.2 × 1052 erg, respectively. We confirm the tight correlation between Ep,rest and Eiso (Amati relation) and the one between Ep,rest and the 1-s peak luminosity (Lp) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α gets softer when Ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither Ep,rest nor T90,rest.
  •  
8.
  • Levesque, E. M., et al. (author)
  • THE HIGH-METALLICITY EXPLOSION ENVIRONMENT OF THE RELATIVISTIC SUPERNOVA 2009bb
  • 2010
  • In: The Astrophysical Journal Letters. - 2041-8205. ; 709:1, s. l26-L31
  • Journal article (peer-reviewed)abstract
    • We investigate the environment of the nearby (d approximate to 40 Mpc) broad-lined Type Ic supernova (SN) 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of interstellar medium properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7 Z(circle dot) and 3.5 Z(circle dot), in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb's unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.
  •  
9.
  • Soderberg, A. M., et al. (author)
  • A relativistic type Ibc supernova without a detected gamma-ray burst
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 463:7280, s. 513-515
  • Journal article (peer-reviewed)abstract
    • Long duration gamma-ray bursts (GRBs) mark(1) the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered(2) by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested(3) in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected(4) that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches(5,6) for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred(7) rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported(8).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view