SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chen Yu 1990) srt2:(2023)"

Search: WFRF:(Chen Yu 1990) > (2023)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wu, Jingnan, 1994, et al. (author)
  • On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 %
  • 2023
  • In: Angewandte Chemie International Edition. - : John Wiley & Sons. - 1433-7851 .- 1521-3773. ; 62:45
  • Journal article (peer-reviewed)abstract
    • The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular & pi;-& pi; interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
  •  
2.
  • Qin, Ning, 1990, et al. (author)
  • Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast
  • 2023
  • In: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 186:4, s. 748-763.e15
  • Journal article (peer-reviewed)abstract
    • Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
  •  
3.
  • Cao, Xuan, et al. (author)
  • Engineering yeast for high-level production of diterpenoid sclareol
  • 2023
  • In: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 75, s. 19-28
  • Journal article (peer-reviewed)abstract
    • The diterpenoid sclareol is an industrially important precursor for alternative sustainable supply of ambergris. However, its current production from plant extraction is neither economical nor environmental-friendly, since it requires laborious and cost-intensive purification procedures and plants cultivation is susceptible to environmental factors. Engineering cell factories for bio-manufacturing can enable sustainable production of natural products. However, stringent metabolic regulation poses challenges to rewire cellular metabolism for overproduction of compounds of interest. Here we used a modular approach to globally rewire the cellular metabolism for improving sclareol production to 11.4 g/L in budding yeast Saccharomyces cerevisiae, the highest reported diterpenoid titer in microbes. Metabolic flux analysis showed that modular balanced metabolism drove the metabolic flux toward the biosynthesis of targeted molecules, and transcriptomic analysis revealed that the expression of central metabolism genes was shaped for a new balanced metabolism, which laid a foundation in extensive metabolic engineering of other microbial species for sustainable bio-production.
  •  
4.
  • Reithmaier, Gloria M.S., et al. (author)
  • Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing thepH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m−2 d−1 in mangroves and 57 ± 104 mmol m−2 d−1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.
  •  
5.
  • Buchanan, E. M., et al. (author)
  • The Psychological Science Accelerator's COVID-19 rapid-response dataset
  • 2023
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
  •  
6.
  • Fürst, Kristoffer, 1990, et al. (author)
  • Support vector machine for classification of households' heating type using load curves
  • 2023
  • In: IET Conference Proceedings. - 2732-4494. ; 2023:6, s. 3884-3888
  • Conference paper (peer-reviewed)abstract
    • The distribution system operator lacks the knowledge of the heating system used by their customers to make sound grid planning decisions. Energy declaration from buildings and the large-scale rollout of smart meters provides an excellent opportunity to classify the heating system used. This paper proposes a machine-learning-based approach using a support vector machine (SVM) with daily load curves (mean and standard deviation of consumption) extracted from smart meter measurements. Three heating types are analysed: district heating, exhaust air heat pump, and direct electric heating. The performance was compared among the classifiers using daily load curves extracted over one year, for each month, each week, and each day of the year. The highest average accuracy of 92.6% was obtained for the SVM classifier using daily load curves extracted for each week of a year as features. Furthermore, the classifier showed a higher performance than using an ensemble of SVM or random forest classifiers (90.6%/90.5%) proposed in the literature. Lastly, an error analysis of the misclassification was carried out, including building characteristics and geographical analysis.
  •  
7.
  • Li, Feiran, 1993, et al. (author)
  • Genome-scale metabolic models applied for human health and biopharmaceutical engineering
  • 2023
  • In: Quantitative Biology. - 2095-4689 .- 2095-4697. ; 11:4, s. 363-375
  • Research review (peer-reviewed)abstract
    • Over the last 15 years, genome-scale metabolic models (GEMs) have been reconstructed for human and model animals, such as mouse and rat, to systematically understand metabolism, simulate multicellular or multi-tissue interplay, understand human diseases, and guide cell factory design for biopharmaceutical protein production. Here, we describe how metabolic networks can be represented using stoichiometric matrices and well-defined constraints for flux simulation. Then, we review the history of GEM development for quantitative understanding of Homo sapiens and other relevant animals, together with their applications. We describe how model develops from H. sapiens to other animals and from generic purpose to precise context-specific simulation. The progress of GEMs for animals greatly expand our systematic understanding of metabolism in human and related animals. We discuss the difficulties and present perspectives on the GEM development and the quest to integrate more biological processes and omics data for future research and translation. We truly hope that this review can inspire new models developed for other mammalian organisms and generate new algorithms for integrating big data to conduct more in-depth analysis to further make progress on human health and biopharmaceutical engineering.
  •  
8.
  • Li, Feiran, 1993, et al. (author)
  • GotEnzymes: an extensive database of enzyme parameter predictions
  • 2023
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 51:D1, s. D583-D586
  • Journal article (peer-reviewed)abstract
    • Enzyme parameters are essential for quantitatively understanding, modelling, and engineering cells. However, experimental measurements cover only a small fraction of known enzyme-compound pairs in model organisms, much less in other organisms. Artificial intelligence (Al) techniques have accelerated the pace of exploring enzyme properties by predicting these in a high-throughput manner. Here, we present GotEnzymes, an extensive database with enzyme parameter predictions by Al approaches, which is publicly available at https://metabolicatlas.org/gotenzymes for interactive web exploration and programmatic access. The first release of this data resource contains predicted turnover numbers of over 25.7 million enzyme-compound pairs across 8099 organisms. We believe that GotEnzymes, with the readily-predicted enzyme parameters, would bring a speed boost to biological research covering both experimental and computational fields that involve working with candidate enzymes.
  •  
9.
  • Zhang, Yiming, 1986, et al. (author)
  • Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production
  • 2023
  • In: Biotechnology for Biofuels and Bioproducts. - 2731-3654. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Background: With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. Results: Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. Conclusions: In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view