SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cherubini N.) srt2:(2018)"

Search: WFRF:(Cherubini N.) > (2018)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Buntgen, U., et al. (author)
  • Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.
  •  
2.
  • Sateanchok, S., et al. (author)
  • In-Line Seawater Phosphate Detection with Ion-Exchange Membrane Reagent Delivery
  • 2018
  • In: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 3:11, s. 2455-2462
  • Journal article (peer-reviewed)abstract
    • There is an urgent need for reliable seawater phosphate measuring tools to better assess eutrophication. Today, most accepted sensing approaches are based on the established colorimetric molybdenum blue assay. It requires one to modify the sample to strongly acidic conditions and to add various reagents, principally molybdate and reducing agent (e.g., ascorbic acid), to form a blue colored phosphate complex that is subsequently detected spectrophotometrically. The associated need for large sample and mobile phase reservoirs and mixing coils are, unfortunately, not ideally adapted for the development of operationally simple in situ sensing instruments. It is here demonstrated for the first time that the key reagents needed to achieve phosphate detection by the molybdate method may be delivered by passive counter transport across ion-exchange membranes. A cation-exchange Donnan exclusion membrane placed in contact with a sample flow (450 μm thick) is shown to provide the strongly acidic conditions (pH ∼ 1) necessary for phosphate determination. Proton transport is driven, via cation-exchange, by the high sodium content of the seawater sample. Molybdate was similarly released through an anion-exchange membrane by chloride counter transport. Consequently, an in-line flow system containing the two membrane modules in series was used for delivering both hydrogen and molybdate ions into the sample to form the desired phosphomolybdate complex for subsequent spectrophotometric detection. A linear calibration in the range of 0.1-10 μM phosphate (3-300 ppb inorganic P) was achieved, which is sufficiently attractive for environmental work. A range of seawater samples was tested and the results from this membrane delivery device showed no significant differences compared to the classical molybdate assay chosen as the reference method.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view