SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chevance Mélanie) srt2:(2020)"

Search: WFRF:(Chevance Mélanie) > (2020)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adamo, Angela, et al. (author)
  • Star Clusters Near and Far Tracing Star Formation Across Cosmic Time
  • 2020
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:4
  • Research review (peer-reviewed)abstract
    • Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e. detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.
  •  
2.
  • Ballesteros-Paredes, Javier, et al. (author)
  • From Diffuse Gas to Dense Molecular Cloud Cores
  • 2020
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Research review (peer-reviewed)abstract
    • Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales similar to 1kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.
  •  
3.
  • Chevance, Mélanie, et al. (author)
  • The Molecular Cloud Lifecycle
  • 2020
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:4
  • Research review (peer-reviewed)abstract
    • Giant molecular clouds (GMCs) and their stellar offspring are the building blocks of galaxies. The physical characteristics of GMCs and their evolution are tightly connected to galaxy evolution. The macroscopic properties of the interstellar medium propagate into the properties of GMCs condensing out of it, with correlations between e.g. the galactic and GMC scale gas pressures, surface densities and volume densities. That way, the galactic environment sets the initial conditions for star formation within GMCs. After the onset of massive star formation, stellar feedback from e.g. photoionisation, stellar winds, and supernovae eventually contributes to dispersing the parent cloud, depositing energy, momentum and metals into the surrounding medium, thereby changing the properties of galaxies. This cycling of matter between gas and stars, governed by star formation and feedback, is therefore a major driver of galaxy evolution. Much of the recent debate has focused on the durations of the various evolutionary phases that constitute this cycle in galaxies, and what these can teach us about the physical mechanisms driving the cycle. We review results from observational, theoretical, and numerical work to build a dynamical picture of the evolutionary lifecycle of GMC evolution, star formation, and feedback in galaxies.
  •  
4.
  • Henshaw, Jonathan D., et al. (author)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Journal article (peer-reviewed)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view