SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Christiansen J. S.) srt2:(2020-2024)"

Search: WFRF:(Christiansen J. S.) > (2020-2024)

  • Result 1-10 of 183
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
3.
  •  
4.
  • Thoma, B, et al. (author)
  • An international, interprofessional investigation of the self-reported podcast listening habits of emergency clinicians: A METRIQ Study
  • 2020
  • In: CJEM. - : Springer Science and Business Media LLC. - 1481-8043 .- 1481-8035. ; 22:1, s. 112-117
  • Journal article (peer-reviewed)abstract
    • ObjectivesPodcasts are increasingly being used for medical education. A deeper understanding of usage patterns would inform both producers and researchers of medical podcasts. We aimed to determine how and why podcasts are used by emergency medicine and critical care clinicians.MethodsAn international interprofessional sample (medical students, residents, physicians, nurses, physician assistants, and paramedics) was recruited through direct contact and a multimodal social media (Twitter and Facebook) campaign. Each participant completed a survey outlining how and why they utilize medical podcasts. Recruitment materials included an infographic and study website.Results390 participants from 33 countries and 4 professions (medicine, nursing, paramedicine, physician assistant) completed the survey. Participants most frequently listened to medical podcasts to review new literature (75.8%), learn core material (75.1%), and refresh memory (71.8%). The majority (62.6%) were aware of the ability to listen at increased speeds, but most (76.9%) listened at 1.0 x (normal) speed. All but 25 (6.4%) participants concurrently performed other tasks while listening. Driving (72.3%), exercising (39.7%), and completing chores (39.2%) were the most common. A minority of participants used active learning techniques such as pausing, rewinding, and replaying segments of the podcast. Very few listened to podcasts multiple times.ConclusionsAn international cohort of emergency clinicians use medical podcasts predominantly for learning. Their listening habits (rarely employing active learning strategies and frequently performing concurrent tasks) may not support this goal. Further exploration of the impact of these activities on learning from podcasts is warranted.
  •  
5.
  • Dunn, R. J. H., et al. (author)
  • GLOBAL CLIMATE : State of the Climate in 2020
  • 2021
  • In: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:8
  • Journal article (peer-reviewed)
  •  
6.
  • Acharyya, A., et al. (author)
  • Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:1
  • Journal article (peer-reviewed)abstract
    • We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2 degrees .2 away from the best -fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high -flux state in the optical, ultraviolet, X-ray, and GeV ?-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the ?-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and ?-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed ?-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power.
  •  
7.
  • Ades, M., et al. (author)
  • Global Climate : in State of the climate in 2019
  • 2020
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Journal article (peer-reviewed)
  •  
8.
  • Ades, M., et al. (author)
  • GLOBAL CLIMATE
  • 2020
  • In: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Journal article (peer-reviewed)
  •  
9.
  • Maes, S.L., et al. (author)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Journal article (peer-reviewed)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
10.
  • Rixen, C., et al. (author)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Journal article (peer-reviewed)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 183
Type of publication
journal article (172)
research review (7)
conference paper (4)
Type of content
peer-reviewed (179)
other academic/artistic (4)
Author/Editor
Christiansen, P. (111)
Silvermyr, D. (101)
Matonoha, O. (101)
Acharya, S (98)
Ohlson, A. (98)
Zurlo, N. (98)
show more...
Basu, S (94)
Nassirpour, A.F. (87)
Staa, J. (65)
Oskarsson, A. (63)
Richert, T. (60)
Rueda, O.V. (60)
Adolfsson, J. (36)
Vislavicius, V. (33)
Hansen, J (22)
Iversen, K.E. (19)
Nepeivoda, R. (12)
Vazquez Rueda, O. (12)
Stenlund, E. (8)
Zugravel, S.C. (8)
Christiansen, J. L. (7)
Ghosh, M. (7)
Nassirpour, A. (7)
Stavropoulos, G. (6)
Efthymiopoulos, I. (6)
Fanourakis, G. (6)
Terranova, F. (6)
Bogomilov, M. (6)
Tsenov, R. (6)
Mezzetto, M. (6)
Baussan, E. (6)
Bouquerel, E. (6)
Cederkall, J. (6)
Eshraqi, M. (6)
Danared, H. (6)
Dracos, M. (6)
Gokbulut, G. (6)
Halić, L. (6)
Kliček, B. (6)
Lindroos, M. (6)
Oglakci, M. (6)
Petkov, G. (6)
Poussot, P. (6)
Stipčević, M. (6)
Tolba, T. (6)
Vankova-Kirilova, G. (6)
Vassilopoulos, N. (6)
Wurtz, J. (6)
Zormpa, O. (6)
Damdimopoulou, P (6)
show less...
University
Lund University (127)
Karolinska Institutet (36)
University of Gothenburg (17)
Chalmers University of Technology (10)
Uppsala University (9)
Umeå University (8)
show more...
Luleå University of Technology (6)
Royal Institute of Technology (5)
Stockholm University (4)
Mid Sweden University (4)
Linnaeus University (4)
Kristianstad University College (1)
Halmstad University (1)
University of Gävle (1)
Örebro University (1)
show less...
Language
English (183)
Research subject (UKÄ/SCB)
Natural sciences (138)
Medical and Health Sciences (20)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view